These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36622092)

  • 1. Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions.
    Shi C; Urbina-Malo C; Tian Y; Heinzle J; Kwatcho Kengdo S; Inselsbacher E; Borken W; Schindlbacher A; Wanek W
    Glob Chang Biol; 2023 Apr; 29(8):2188-2202. PubMed ID: 36622092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limiting resources for soil microbial growth in climate change simulation treatments in the subarctic.
    Yuan M; Na M; Hicks LC; Rousk J
    Ecology; 2024 Jan; 105(1):e4210. PubMed ID: 37989722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrubland.
    Schaeffer SM; Evans RD
    Oecologia; 2005 Sep; 145(3):425-33. PubMed ID: 16001224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation and soil responses to added carbon and nutrients remain six years after discontinuation of long-term treatments.
    Liu N; Michelsen A; Rinnan R
    Sci Total Environ; 2020 Jun; 722():137885. PubMed ID: 32199383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs.
    Zhang WJ; Zhu W; Hu S
    J Environ Sci (China); 2005; 17(5):705-10. PubMed ID: 16312988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth.
    Zhu E; Cao Z; Jia J; Liu C; Zhang Z; Wang H; Dai G; He JS; Feng X
    Glob Chang Biol; 2021 May; 27(10):2241-2253. PubMed ID: 33528033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming.
    Feng W; Liang J; Hale LE; Jung CG; Chen J; Zhou J; Xu M; Yuan M; Wu L; Bracho R; Pegoraro E; Schuur EAG; Luo Y
    Glob Chang Biol; 2017 Nov; 23(11):4765-4776. PubMed ID: 28597589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial nitrogen and phosphorus co-limitation across permafrost region.
    Zhang D; Wang L; Qin S; Kou D; Wang S; Zheng Z; Peñuelas J; Yang Y
    Glob Chang Biol; 2023 Jul; 29(14):3910-3923. PubMed ID: 37097019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of C:N:P stoichiometric correlations among plants, soils and microorganisms to warming: A meta-analysis.
    Yu Z; Zhang C; Liu X; Lei J; Zhang Q; Yuan Z; Peng C; Koerner SE; Xu J; Guo L
    Sci Total Environ; 2024 Feb; 912():168827. PubMed ID: 38030014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses.
    Tian Y; Shi C; Malo CU; Kwatcho Kengdo S; Heinzle J; Inselsbacher E; Ottner F; Borken W; Michel K; Schindlbacher A; Wanek W
    Nat Commun; 2023 Feb; 14(1):864. PubMed ID: 36792624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.
    Schindlbacher A; Schnecker J; Takriti M; Borken W; Wanek W
    Glob Chang Biol; 2015 Nov; 21(11):4265-77. PubMed ID: 26046333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple resource limitation of dryland soil microbial carbon cycling on the Colorado Plateau.
    Choi RT; Reed SC; Tucker CL
    Ecology; 2022 Jun; 103(6):e3671. PubMed ID: 35233760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short-term warming.
    Li Y; Lv W; Jiang L; Zhang L; Wang S; Wang Q; Xue K; Li B; Liu P; Hong H; Renzen W; Wang A; Luo C; Zhang Z; Dorji T; Taş N; Wang Z; Zhou H; Wang Y
    Glob Chang Biol; 2019 Oct; 25(10):3438-3449. PubMed ID: 31373124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microorganisms in subarctic soils are depleted of ribosomes under short-, medium-, and long-term warming.
    Söllinger A; Ahlers LS; Dahl MB; Sigurðsson P; Le Noir de Carlan C; Bhattarai B; Gall C; Martin VS; Rottensteiner C; Motleleng LL; Breines EM; Verbruggen E; Ostonen I; Sigurdsson BD; Richter A; Tveit AT
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38722823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes?
    Hartman WH; Richardson CJ
    PLoS One; 2013; 8(3):e57127. PubMed ID: 23526933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization.
    Tiunov AV; Scheu S
    Oecologia; 2004 Jan; 138(1):83-90. PubMed ID: 14530960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial communities in terrestrial surface soils are not widely limited by carbon.
    Cui Y; Peng S; Delgado-Baquerizo M; Rillig MC; Terrer C; Zhu B; Jing X; Chen J; Li J; Feng J; He Y; Fang L; Moorhead DL; Sinsabaugh RL; Peñuelas J
    Glob Chang Biol; 2023 Aug; 29(15):4412-4429. PubMed ID: 37277945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic.
    Hicks LC; Leizeaga A; Rousk K; Michelsen A; Rousk J
    Ecology; 2020 Sep; 101(9):e03094. PubMed ID: 32379897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath.
    Michelsen A; Graglia E; Schmidt IK; Jonasson S; Sleep D; Quarmby C
    New Phytol; 1999 Sep; 143(3):523-538. PubMed ID: 33862891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming.
    Walker TWN; Gavazov K; Guillaume T; Lambert T; Mariotte P; Routh D; Signarbieux C; Block S; Münkemüller T; Nomoto H; Crowther TW; Richter A; Buttler A; Alexander JM
    Elife; 2022 May; 11():. PubMed ID: 35550673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.