These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36622129)

  • 1. Designed Iron Catalysts for Allylic C-H Functionalization of Propylene and Simple Olefins.
    Wang R; Wang Y; Ding R; Staub PB; Zhao CZ; Liu P; Wang YM
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202216309. PubMed ID: 36622129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition Metal Mimetic π-Activation by Cationic Bismuth(III) Catalysts for Allylic C-H Functionalization of Olefins Using C═O and C═N Electrophiles.
    Wang R; Martínez S; Schwarzmann J; Zhao CZ; Ramler J; Lichtenberg C; Wang YM
    J Am Chem Soc; 2024 Aug; 146(32):22122-22128. PubMed ID: 39102739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-catalyzed α-C-H functionalization of π-bonds: cross-dehydrogenative coupling and mechanistic insights.
    Wang Y; Zhu J; Guo R; Lindberg H; Wang YM
    Chem Sci; 2020 Oct; 11(45):12316-12322. PubMed ID: 34094439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-C-H Functionalization of π-Bonds Using Iron Complexes: Catalytic Hydroxyalkylation of Alkynes and Alkenes.
    Wang Y; Zhu J; Durham AC; Lindberg H; Wang YM
    J Am Chem Soc; 2019 Dec; 141(50):19594-19599. PubMed ID: 31791121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in oxidative allylic C-H functionalization via group IX-metal catalysis.
    Kazerouni AM; McKoy QA; Blakey SB
    Chem Commun (Camb); 2020 Nov; 56(87):13287-13300. PubMed ID: 33015689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications.
    Wang PS; Gong LZ
    Acc Chem Res; 2020 Dec; 53(12):2841-2854. PubMed ID: 33006283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palladium-catalyzed allylic C-H bond functionalization of olefins.
    Liu G; Wu Y
    Top Curr Chem; 2010; 292():195-209. PubMed ID: 21500407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NiH-Catalyzed Functionalization of Remote and Proximal Olefins: New Reactions and Innovative Strategies.
    Wang Y; He Y; Zhu S
    Acc Chem Res; 2022 Dec; 55(23):3519-3536. PubMed ID: 36350093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Aerobic Allylic C-H Bond Oxidation with Heterogeneous Iron Catalyst.
    Jiang Y; Chen S; Chen Y; Gu A; Tang C
    J Am Chem Soc; 2024 Jan; 146(4):2769-2778. PubMed ID: 38240486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite,Olefin) Ligands.
    Rössler SL; Petrone DA; Carreira EM
    Acc Chem Res; 2019 Sep; 52(9):2657-2672. PubMed ID: 31243973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A C-H functionalization approach to diverse nitrogenous scaffolds through conjugate addition of catalytic allyliron nucleophiles.
    Scrivener SG; Wang YM
    Chem Sci; 2024 Jun; 15(23):8850-8857. PubMed ID: 38873053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allylic C-H functionalization
    Nelson TAF; Hollerbach MR; Blakey SB
    Dalton Trans; 2020 Oct; 49(40):13928-13935. PubMed ID: 32909583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (NHC)Ni(II)-Directed Insertions and Higher Substituted Olefin Synthesis from Simple Olefins.
    Zhang Z; Chen Y; Gu X; Ho CY
    Acc Chem Res; 2023 May; 56(9):1070-1086. PubMed ID: 37036948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scope and mechanism of allylic C-H amination of terminal alkenes by the palladium/PhI(OPiv)2 catalyst system: insights into the effect of naphthoquinone.
    Yin G; Wu Y; Liu G
    J Am Chem Soc; 2010 Sep; 132(34):11978-87. PubMed ID: 20690676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palladium(II)-Catalyzed Enantioselective Reactions Using COP Catalysts.
    Cannon JS; Overman LE
    Acc Chem Res; 2016 Oct; 49(10):2220-2231. PubMed ID: 27689745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-H to C-N Cross-Coupling of Sulfonamides with Olefins.
    Ma R; White MC
    J Am Chem Soc; 2018 Mar; 140(9):3202-3205. PubMed ID: 29432000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allylic C-H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis.
    Ali SZ; Budaitis BG; Fontaine DFA; Pace AL; Garwin JA; White MC
    Science; 2022 Apr; 376(6590):276-283. PubMed ID: 35420962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-valent cobalt catalysis: new opportunities for C-H functionalization.
    Gao K; Yoshikai N
    Acc Chem Res; 2014 Apr; 47(4):1208-19. PubMed ID: 24576170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.