BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36622299)

  • 1. Thermally Accelerated Surface Polaron Hopping in Photoelectrochemical Water Splitting.
    Du Y; Yan S; Zou Z
    J Phys Chem Lett; 2023 Jan; 14(2):413-419. PubMed ID: 36622299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal-Stabilized Protonated TiO
    Du Y; Arifuddin AA; Qin H; Yan S; Zou Z
    J Phys Chem Lett; 2024 May; 15(21):5681-5688. PubMed ID: 38767856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO
    Zhu H; Xiao S; Tu W; Yan S; He T; Zhu X; Yao Y; Zhou Y; Zou Z
    J Phys Chem Lett; 2021 Nov; 12(44):10815-10822. PubMed ID: 34726410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface.
    Zhu H; Yang Q; Liu D; Liu D; Zhang W; Chu Z; Wang X; Yan S; Li Z; Zou Z
    J Phys Chem Lett; 2020 Nov; 11(21):9184-9194. PubMed ID: 33058679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient charge separation and transfer of a TaON/BiVO
    Li N; Jiang Y; Wang X; Hu C; Jiang W; Li S; Xia L
    RSC Adv; 2021 Apr; 11(22):13269-13273. PubMed ID: 35423882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface polaron states on single-crystal rutile TiO
    Yang Q; Zhu H; Hou Y; Liu D; Tang H; Liu D; Zhang W; Yan S; Zou Z
    Dalton Trans; 2020 Nov; 49(42):15054-15060. PubMed ID: 33103679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonadiabatic Dynamics of Polaron Hopping and Coupling with Water on Reduced TiO
    Xu ZF; Tong CJ; Si RT; Teobaldi G; Liu LM
    J Phys Chem Lett; 2022 Jan; 13(3):857-863. PubMed ID: 35045256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency.
    Ye S; Shi W; Liu Y; Li D; Yin H; Chi H; Luo Y; Ta N; Fan F; Wang X; Li C
    J Am Chem Soc; 2021 Aug; 143(32):12499-12508. PubMed ID: 34343431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping.
    Wu H; Zhang L; Du A; Irani R; van de Krol R; Abdi FF; Ng YH
    Nat Commun; 2022 Oct; 13(1):6231. PubMed ID: 36266344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO4 Photoanodes.
    Tang Y; Wang R; Yang Y; Yan D; Xiang X
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19446-55. PubMed ID: 27419597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting.
    Zheng G; Wang J; Liu H; Murugadoss V; Zu G; Che H; Lai C; Li H; Ding T; Gao Q; Guo Z
    Nanoscale; 2019 Oct; 11(41):18968-18994. PubMed ID: 31361294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Strategy for Boosting Photogenerated Charge Separation by Using Porphyrins as Interfacial Charge Mediators.
    Ning X; Lu B; Zhang Z; Du P; Ren H; Shan D; Chen J; Gao Y; Lu X
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16800-16805. PubMed ID: 31486209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial repairing of semiconductor-electrocatalyst interfaces for efficient photoelectrochemical water oxidation.
    Zhao H; Ning X; Wang Z; Du P; Zhang R; He Y; Lu X
    J Colloid Interface Sci; 2022 Jun; 615():318-326. PubMed ID: 35144232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting.
    Li JM; Cheng HY; Chiu YH; Hsu YJ
    Nanoscale; 2016 Aug; 8(34):15720-9. PubMed ID: 27527337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Branched Ca-Fe
    Chen D; Liu Z; Guo Z; Ruan M; Yan W
    ChemSusChem; 2019 Jul; 12(14):3286-3295. PubMed ID: 31140747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting.
    Hu Z; Wang R; Han C; Chen R
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):946-954. PubMed ID: 36041246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Back Electron Transfer at TiO
    Zhu H; Yan S; Li Z; Zou Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33887-33895. PubMed ID: 28901739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembling γ-graphyne surrounding TiO
    Qiu D; He C; Lu Y; Li Q; Chen Y; Cui X
    Dalton Trans; 2021 Nov; 50(42):15422-15432. PubMed ID: 34661591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.