These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 36622407)

  • 41. Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease.
    Valverde P; Kawai T; Taubman MA
    J Dent Res; 2005 Jun; 84(6):488-99. PubMed ID: 15914584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties.
    Schmalhofer WA; Bao J; McManus OB; Green B; Matyskiela M; Wunderler D; Bugianesi RM; Felix JP; Hanner M; Linde-Arias AR; Ponte CG; Velasco L; Koo G; Staruch MJ; Miao S; Parsons WH; Rupprecht K; Slaughter RS; Kaczorowski GJ; Garcia ML
    Biochemistry; 2002 Jun; 41(24):7781-94. PubMed ID: 12056910
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polyamines as gating molecules of inward-rectifier K+ channels.
    Oliver D; Baukrowitz T; Fakler B
    Eur J Biochem; 2000 Oct; 267(19):5824-9. PubMed ID: 10998040
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels.
    Loussouarn G; Park KH; Bellocq C; Baró I; Charpentier F; Escande D
    EMBO J; 2003 Oct; 22(20):5412-21. PubMed ID: 14532114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters.
    Lim C; Dudev T
    Met Ions Life Sci; 2016; 16():325-47. PubMed ID: 26860306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Ca2+-activated K+ channel of intermediate conductance:a possible target for immune suppression.
    Jensen BS; Hertz M; Christophersen P; Madsen LS
    Expert Opin Ther Targets; 2002 Dec; 6(6):623-36. PubMed ID: 12472376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ion conduction pore is conserved among potassium channels.
    Lu Z; Klem AM; Ramu Y
    Nature; 2001 Oct; 413(6858):809-13. PubMed ID: 11677598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Voltage-gated K+ channels in rat small cerebral arteries: molecular identity of the functional channels.
    Albarwani S; Nemetz LT; Madden JA; Tobin AA; England SK; Pratt PF; Rusch NJ
    J Physiol; 2003 Sep; 551(Pt 3):751-63. PubMed ID: 12815189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea.
    van Den Abbeele T; Teulon J; Huy PT
    Am J Physiol; 1999 Nov; 277(5):C913-25. PubMed ID: 10564084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.
    Baron A; Frieden M; Chabaud F; Bény JL
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):691-706. PubMed ID: 8799892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blockade of K+ and Ca2+ channels by azole antifungal agents in neonatal rat ventricular myocytes.
    Sung DJ; Kim JG; Won KJ; Kim B; Shin HC; Park JY; Bae YM
    Biol Pharm Bull; 2012; 35(9):1469-75. PubMed ID: 22975497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Signaling pathways targeting mitochondrial potassium channels.
    Rotko D; Kunz WS; Szewczyk A; Kulawiak B
    Int J Biochem Cell Biol; 2020 Aug; 125():105792. PubMed ID: 32574707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of K
    Taura J; Kircher DM; Gameiro-Ros I; Slesinger PA
    Handb Exp Pharmacol; 2021; 267():1-49. PubMed ID: 34247281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins.
    Levite M; Cahalon L; Peretz A; Hershkoviz R; Sobko A; Ariel A; Desai R; Attali B; Lider O
    J Exp Med; 2000 Apr; 191(7):1167-76. PubMed ID: 10748234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of a Kv3.4 channel in corneal epithelial cells.
    Wang L; Fyffe RE; Lu L
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1796-803. PubMed ID: 15161842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Why do platelets express K
    Wright JR; Mahaut-Smith MP
    Platelets; 2021 Oct; 32(7):872-879. PubMed ID: 33872124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacology of cardiac potassium channels.
    Li GR; Dong MQ
    Adv Pharmacol; 2010; 59():93-134. PubMed ID: 20933200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Permeation of Na+ through a delayed rectifier K+ channel in chick dorsal root ganglion neurons.
    Callahan MJ; Korn SJ
    J Gen Physiol; 1994 Oct; 104(4):747-71. PubMed ID: 7836940
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative study of the energetics of ion permeation in Kv1.2 and KcsA potassium channels.
    Baştuğ T; Kuyucak S
    Biophys J; 2011 Feb; 100(3):629-636. PubMed ID: 21281577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.