These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36622614)

  • 1. Removal mechanism of Microcystis aeruginosa in Fe
    Zhai Q; Song L; Huang S; Ji X; Yu Y; Ye J; Wei H; Xu W; Hou M
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40911-40918. PubMed ID: 36622614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe
    Tian X; Li Y; Xu H; Pang Y; Zhang J; Pei H
    J Hazard Mater; 2021 Jun; 412():125206. PubMed ID: 33516101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The behaviors of Microcystis aeruginosa and microcystins during the Fe
    Song Q; Niu X; Zhang D; Song X; Li Y; Ma J; Lai S; Yang Z; Zhou S
    Environ Res; 2020 Jul; 186():109549. PubMed ID: 32325291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms.
    Zhang D; Ye Q; Zhang F; Shao X; Fan Y; Zhu X; Li Y; Yao L; Tian Y; Zheng T; Xu H
    Chemosphere; 2019 Mar; 218():138-146. PubMed ID: 30471494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.
    Qi J; Lan H; Liu R; Liu H; Qu J
    Water Res; 2018 Jun; 137():57-63. PubMed ID: 29533811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter.
    Cui J; Niu X; Zhang D; Ma J; Zhu X; Zheng X; Lin Z; Fu M
    Carbohydr Polym; 2023 Mar; 304():120474. PubMed ID: 36641191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mn(VII)-Fe(II) pre-treatment for Microcystis aeruginosa removal by Al coagulation: simultaneous enhanced cyanobacterium removal and residual coagulant control.
    Ma M; Liu R; Liu H; Qu J
    Water Res; 2014 Nov; 65():73-84. PubMed ID: 25090625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H
    Jia P; Zhou Y; Zhang X; Zhang Y; Dai R
    Water Res; 2018 Mar; 131():122-130. PubMed ID: 29277080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of cyanobacteria and control of algal organic matter by simultaneous oxidation and coagulation - comparing the H
    Zhang X; Ma Y; Tang T; Xiong Y; Dai R
    Sci Total Environ; 2020 Jun; 720():137653. PubMed ID: 32325594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of moderate pre-oxidation on the removal of Microcystis aeruginosa by KMnO4-Fe(II) process: significance of the in-situ formed Fe(III).
    Ma M; Liu R; Liu H; Qu J
    Water Res; 2012 Jan; 46(1):73-81. PubMed ID: 22078228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation and transformation of bisphenol A in UV/Sodium percarbonate: Dual role of carbonate radical anion.
    Gao J; Duan X; O'Shea K; Dionysiou DD
    Water Res; 2020 Mar; 171():115394. PubMed ID: 31881497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV/persulfate preoxidation to improve coagulation efficiency of Microcystis aeruginosa.
    Chen Y; Xie P; Wang Z; Shang R; Wang S
    J Hazard Mater; 2017 Jan; 322(Pt B):508-515. PubMed ID: 27776868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KMnO4-Fe(II) pretreatment to enhance Microcystis aeruginosa removal by aluminum coagulation: Does it work after long distance transportation?
    Qi J; Lan H; Miao S; Xu Q; Liu R; Liu H; Qu J
    Water Res; 2016 Jan; 88():127-134. PubMed ID: 26479785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A innovative stepwise strategy using magnetic Fe
    Yang Z; Hou J; Pan Z; Wu M; Zhang M; Wu J; Miao L
    J Hazard Mater; 2022 Oct; 439():129485. PubMed ID: 35868085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible environmental-friendly removal of Microcystis aeruginosa by using pyroligneous acid.
    Zhu Y; Cheng S; Wang P; Chen H; Zhang X; Liu L; Li X; Ding Y
    Ecotoxicol Environ Saf; 2020 Dec; 205():111159. PubMed ID: 32829212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using flocculation and subsequent biomanipulation to control microcystis blooms: A laboratory study.
    Zhou X; He Y; Li H; Wei Y; Zhao L; Yang G; Chen X
    Harmful Algae; 2020 Nov; 99():101917. PubMed ID: 33218442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Removal of
    Wang J; Wan Y; Yue S; Ding J; Xie P; Wang Z
    Front Chem; 2020; 8():591641. PubMed ID: 33330378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrous-activated sodium percarbonate pre-oxidation for membrane fouling control during ultrafiltration of algae-laden water.
    Ren Z; Cheng X; Li P; Luo C; Tan F; Zhou W; Liu W; Zheng L; Wu D
    Sci Total Environ; 2020 Oct; 739():140030. PubMed ID: 32758948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of trichloromethane formation from two algae species during two pre-oxidation-coagulation-chlorination processes.
    Shi X; Bi R; Yuan B; Liao X; Zhou Z; Li F; Sun W
    Sci Total Environ; 2019 Mar; 656():1063-1070. PubMed ID: 30625638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of dyes by UV/Persulfate and comparison with other UV-based advanced oxidation processes: Kinetics and role of radicals.
    Hoang NT; Nguyen VT; Minh Tuan ND; Manh TD; Le PC; Van Tac D; Mwazighe FM
    Chemosphere; 2022 Jul; 298():134197. PubMed ID: 35276111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.