These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36622833)

  • 1. Energy Expenditure Under General Anesthesia: An Observational Study Using Indirect Calorimetry in Patients Having Noncardiac Surgery.
    Briesenick L; Schaade A; Bergholz A; Hoppe P; Kouz K; Krause L; Flick M; Saugel B
    Anesth Analg; 2023 Jul; 137(1):169-175. PubMed ID: 36622833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Single-Center Prospective Observational Study Comparing Resting Energy Expenditure in Different Phases of Critical Illness: Indirect Calorimetry Versus Predictive Equations.
    Tah PC; Lee ZY; Poh BK; Abdul Majid H; Hakumat-Rai VR; Mat Nor MB; Kee CC; Kamarul Zaman M; Hasan MS
    Crit Care Med; 2020 May; 48(5):e380-e390. PubMed ID: 32168031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Expenditure After Liver Resection: Validation of a Mobile Device for Estimating Resting Energy Expenditure and an Investigation of Energy Expenditure Change After Liver Resection.
    Hughes MJ; Harrison EM; Wigmore SJ
    JPEN J Parenter Enteral Nutr; 2017 Jul; 41(5):766-775. PubMed ID: 26304600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A short period of fasting before surgery conserves basal metabolism and suppresses catabolism according to indirect calorimetry performed under general anesthesia.
    Yoshimura S; Fujita Y; Hirate H; Kusama N; Azami T; Sobue K
    J Anesth; 2015 Jun; 29(3):453-456. PubMed ID: 25398400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO
    Koekkoek WAC; Xiaochen G; van Dijk D; van Zanten ARH
    Clin Nutr ESPEN; 2020 Oct; 39():137-143. PubMed ID: 32859307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of resting energy expenditure prediction methods with measured resting energy expenditure in obese, hospitalized adults.
    Anderegg BA; Worrall C; Barbour E; Simpson KN; Delegge M
    JPEN J Parenter Enteral Nutr; 2009; 33(2):168-75. PubMed ID: 19251910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of anesthesia and surgery on energy expenditure determined by indirect calorimetry in dogs with malignant and nonmalignant conditions.
    Ogilvie GK; Salman MD; Kesel ML; Fettman MJ
    Am J Vet Res; 1996 Sep; 57(9):1321-6. PubMed ID: 8874727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring energy expenditure in community-dwelling older adults: are portable methods valid and acceptable?
    Fares S; Miller MD; Masters S; Crotty M
    J Am Diet Assoc; 2008 Mar; 108(3):544-8. PubMed ID: 18313438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicted versus measured resting energy expenditure in patients requiring home parenteral nutrition.
    Ławiński M; Singer P; Gradowski Ł; Gradowska A; Bzikowska A; Majewska K
    Nutrition; 2015; 31(11-12):1328-32. PubMed ID: 26278135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and reliability of a portable indirect calorimeter compared to whole-body indirect calorimetry for measuring resting energy expenditure.
    Purcell SA; Johnson-Stoklossa C; Braga Tibaes JR; Frankish A; Elliott SA; Padwal R; Prado CM
    Clin Nutr ESPEN; 2020 Oct; 39():67-73. PubMed ID: 32859331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of carbon dioxide production (VCO
    Kagan I; Zusman O; Bendavid I; Theilla M; Cohen J; Singer P
    Crit Care; 2018 Aug; 22(1):186. PubMed ID: 30075796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical view of the use of predictive energy equations for the identification of hypermetabolism in motor neuron disease: A pilot study.
    Roscoe S; Skinner E; Kabucho Kibirige E; Childs C; Weekes CE; Wootton S; Allen S; McDermott C; Stavroulakis T
    Clin Nutr ESPEN; 2023 Oct; 57():739-748. PubMed ID: 37739732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients.
    Savard JF; Faisy C; Lerolle N; Guerot E; Diehl JL; Fagon JY
    Crit Care Med; 2008 Apr; 36(4):1175-83. PubMed ID: 18379244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a new method for estimating resting energy expenditure of non-ambulatory tube-fed patients with severe neurodevelopmental disabilities.
    Dickerson RN; Brown RO; Hanna DL; Williams JE
    Nutrition; 2002; 18(7-8):578-82. PubMed ID: 12093433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postoperative effects of anesthesia and surgery on resting energy expenditure in horses as measured by indirect calorimetry.
    Cruz AM; Coté N; McDonell WN; Geor RJ; Wilson BA; Monteith G; Li R
    Can J Vet Res; 2006 Oct; 70(4):257-62. PubMed ID: 17042377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic inflammation increases energy expenditure following pediatric cardiopulmonary bypass.
    Floh AA; Nakada M; La Rotta G; Mah K; Herridge JE; Van Arsdell G; Schwartz SM
    Pediatr Crit Care Med; 2015 May; 16(4):343-51. PubMed ID: 25651049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting energy expenditure in patients with cirrhosis of the liver measured by indirect calorimetry, anthropometry and bioelectrical impedance analysis.
    Waluga M; Zahorska-Markiewicz B; Janusz M; Słabiak Z; Chełmicka A
    Experientia; 1996 Jun; 52(6):591-6. PubMed ID: 8698095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenge of predicting resting energy expenditure in children undergoing surgery for congenital heart disease.
    De Wit B; Meyer R; Desai A; Macrae D; Pathan N
    Pediatr Crit Care Med; 2010 Jul; 11(4):496-501. PubMed ID: 20124946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cumulative energy imbalance in the pediatric intensive care unit: role of targeted indirect calorimetry.
    Mehta NM; Bechard LJ; Leavitt K; Duggan C
    JPEN J Parenter Enteral Nutr; 2009; 33(3):336-44. PubMed ID: 19126761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy imbalance and the risk of overfeeding in critically ill children.
    Mehta NM; Bechard LJ; Dolan M; Ariagno K; Jiang H; Duggan C
    Pediatr Crit Care Med; 2011 Jul; 12(4):398-405. PubMed ID: 20975614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.