These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36623172)
1. Buoyancy-Driven Chemohydrodynamic Patterns in A + B → Oscillator Two-Layer Stratifications. Budroni MA; Lemaigre L; Escala DM; Wit A Langmuir; 2023 Jan; 39(3):997-1009. PubMed ID: 36623172 [TBL] [Abstract][Full Text] [Related]
2. Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns. Budroni MA; De Wit A Chaos; 2017 Oct; 27(10):104617. PubMed ID: 29092422 [TBL] [Abstract][Full Text] [Related]
3. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator. Escala DM; Budroni MA; Carballido-Landeira J; De Wit A; Muñuzuri AP J Phys Chem Lett; 2014 Feb; 5(3):413-8. PubMed ID: 26276584 [TBL] [Abstract][Full Text] [Related]
4. Control of Rayleigh-Taylor instability onset time and convective velocity by differential diffusion effects. Gopalakrishnan SS; Carballido-Landeira J; Knaepen B; De Wit A Phys Rev E; 2018 Jul; 98(1-1):011101. PubMed ID: 30110793 [TBL] [Abstract][Full Text] [Related]
5. Chemo-hydrodynamic pulsations in simple batch A + B → C systems. Budroni MA; Polo A; Upadhyay V; Bigaj A; Rongy L J Chem Phys; 2021 Mar; 154(11):114501. PubMed ID: 33752375 [TBL] [Abstract][Full Text] [Related]
6. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator. Kuster S; Riolfo LA; Zalts A; El Hasi C; Almarcha C; Trevelyan PM; De Wit A; D'Onofrio A Phys Chem Chem Phys; 2011 Oct; 13(38):17295-303. PubMed ID: 21881652 [TBL] [Abstract][Full Text] [Related]
7. Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations. Budroni MA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063007. PubMed ID: 26764804 [TBL] [Abstract][Full Text] [Related]
8. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. Rongy L; Goyal N; Meiburg E; De Wit A J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873 [TBL] [Abstract][Full Text] [Related]
9. Spatially Localized Chemical Patterns around an A + B → Oscillator Front. Budroni MA; Lemaigre L; Escala DM; Muñuzuri AP; De Wit A J Phys Chem A; 2016 Feb; 120(6):851-60. PubMed ID: 26725730 [TBL] [Abstract][Full Text] [Related]
10. Localized stationary and traveling reaction-diffusion patterns in a two-layer A+B→ oscillator system. Budroni MA; De Wit A Phys Rev E; 2016 Jun; 93(6):062207. PubMed ID: 27415255 [TBL] [Abstract][Full Text] [Related]
11. Interfacial hydrodynamic instabilities driven by cross-diffusion in reverse microemulsions. Budroni MA; Carballido-Landeira J; Intiso A; De Wit A; Rossi F Chaos; 2015 Jun; 25(6):064502. PubMed ID: 26117125 [TBL] [Abstract][Full Text] [Related]
12. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations. D'Hernoncourt J; Merkin JH; De Wit A J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541 [TBL] [Abstract][Full Text] [Related]
13. Front fingering and complex dynamics driven by the interaction of buoyancy and diffusive instabilities. D'Hernoncourt J; Merkin JH; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035301. PubMed ID: 17930295 [TBL] [Abstract][Full Text] [Related]
14. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature. García Casado G; Tofaletti L; Müller D; D'Onofrio A J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215 [TBL] [Abstract][Full Text] [Related]
15. Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front. Almarcha C; Trevelyan PM; Grosfils P; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033009. PubMed ID: 24125346 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear development of convective patterns driven by a neutralization reaction in immiscible two-layer systems. Bratsun D; Mizev A; Utochkin V; Nekrasov S; Shmyrova A Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220178. PubMed ID: 36842984 [TBL] [Abstract][Full Text] [Related]
17. Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves. Šebestíková L; Hauser MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036303. PubMed ID: 22587176 [TBL] [Abstract][Full Text] [Related]
18. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts. D'Hernoncourt J; Zebib A; De Wit A Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245 [TBL] [Abstract][Full Text] [Related]
19. Buoyancy-driven instabilities around miscible A+B→C reaction fronts: a general classification. Trevelyan PM; Almarcha C; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023001. PubMed ID: 25768591 [TBL] [Abstract][Full Text] [Related]
20. Convective mixing induced by acid-base reactions. Almarcha C; R'Honi Y; De Decker Y; Trevelyan PM; Eckert K; De Wit A J Phys Chem B; 2011 Aug; 115(32):9739-44. PubMed ID: 21793552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]