BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36623172)

  • 21. Making a Simple A+B→C Reaction Oscillate by Coupling to Hydrodynamic Effect.
    Budroni MA; Upadhyay V; Rongy L
    Phys Rev Lett; 2019 Jun; 122(24):244502. PubMed ID: 31322378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments.
    Budroni MA; Thomas C; De Wit A
    Phys Chem Chem Phys; 2017 Mar; 19(11):7936-7946. PubMed ID: 28262876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemically driven hydrodynamic instabilities.
    Almarcha C; Trevelyan PM; Grosfils P; De Wit A
    Phys Rev Lett; 2010 Jan; 104(4):044501. PubMed ID: 20366715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Segmented waves in a reaction-diffusion-convection system.
    Rossi F; Budroni MA; Marchettini N; Carballido-Landeira J
    Chaos; 2012 Sep; 22(3):037109. PubMed ID: 23020500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical Control of Hydrodynamic Instabilities in Partially Miscible Two-Layer Systems.
    Budroni MA; Riolfo LA; Lemaigre L; Rossi F; Rustici M; De Wit A
    J Phys Chem Lett; 2014 Mar; 5(5):875-81. PubMed ID: 26274081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaction-driven oscillating viscous fingering.
    Rana C; De Wit A
    Chaos; 2019 Apr; 29(4):043115. PubMed ID: 31042958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oscillatory Rayleigh-Marangoni convection in a layer heated from above: numerical simulations with an undeformable free surface.
    Boeck T; Jurgk M; Bahr U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):027303. PubMed ID: 12636867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection.
    Rongy L; Trevelyan PM; De Wit A
    Phys Rev Lett; 2008 Aug; 101(8):084503. PubMed ID: 18764622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts.
    Budroni MA; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 Nov; 14(42):14619-29. PubMed ID: 23032937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scalings of Rayleigh-Taylor Instability at Large Viscosity Contrasts in Porous Media.
    Sabet N; Hassanzadeh H; De Wit A; Abedi J
    Phys Rev Lett; 2021 Mar; 126(9):094501. PubMed ID: 33750169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Marangoni-driven nonlinear dynamics of bimolecular frontal systems: a general classification for equal diffusion coefficients.
    Tiani R; Rongy L
    Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220080. PubMed ID: 36842981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of onset of Soret-driven convection by the energy method.
    Kim MC; Choi CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036302. PubMed ID: 17930336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Induced Rayleigh-Taylor Instability in Segregating Dry Granular Flows.
    D'Ortona U; Thomas N
    Phys Rev Lett; 2020 May; 124(17):178001. PubMed ID: 32412275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Convective instabilities derived from dissipation of chemical energy.
    Simoyi RH
    Chaos; 2019 Aug; 29(8):083136. PubMed ID: 31472521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical control of dissolution-driven convection in partially miscible systems: theoretical classification.
    Loodts V; Rongy L; De Wit A
    Phys Chem Chem Phys; 2015 Nov; 17(44):29814-23. PubMed ID: 26486608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction driven convection around a stably stratified chemical front.
    D'Hernoncourt J; Zebib A; De Wit A
    Phys Rev Lett; 2006 Apr; 96(15):154501. PubMed ID: 16712159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Convective structures in a two-layer gel-liquid excitable medium.
    Perez-Villar V; Munuzuri AP; Perez-Munuzuri V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3771-6. PubMed ID: 11088156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaporation-induced Rayleigh-Taylor instabilities in polymer solutions.
    Mossige EJ; Chandran Suja V; Islamov M; Wheeler SF; Fuller GG
    Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2174):20190533. PubMed ID: 32507094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.