These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36623314)

  • 41. Thermoelectric nanowires for dense 3D printed architectures.
    Zhang D; Ramiah J; Cagirici M; Saglik K; Solco SFD; Cao J; Xu J; Suwardi A
    Mater Horiz; 2024 Feb; 11(3):847-854. PubMed ID: 38037761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substitutional and interstitial impurity p-type doping of thermoelectric Mg
    Hirayama N; Iida T; Sakamoto M; Nishio K; Hamada N
    Sci Technol Adv Mater; 2019; 20(1):160-172. PubMed ID: 30891103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression.
    Liu Y; Xu W; Liu DB; Yu M; Lin YH; Nan CW
    Phys Chem Chem Phys; 2015 May; 17(17):11229-33. PubMed ID: 25829235
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A strategy to optimize the thermoelectric performance in a spark plasma sintering process.
    Chiu WT; Chen CL; Chen YY
    Sci Rep; 2016 Mar; 6():23143. PubMed ID: 26975209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication of ZrO
    Ghayebloo M; Alizadeh P; Melo RM
    J Mech Behav Biomed Mater; 2020 May; 105():103709. PubMed ID: 32279851
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TiO
    Zavjalov A; Tikhonov S; Kosyanov D
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach.
    Ivakin YD; Smirnov AV; Kurmysheva AY; Kharlanov AN; Solís Pinargote NW; Smirnov A; Grigoriev SN
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synergistic Optimization of the Thermoelectric and Mechanical Properties of Large-Size Homogeneous Bi
    Lee CH; Dharmaiah P; Kim DH; Yoon DK; Kim TH; Song SH; Hong SJ
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10394-10406. PubMed ID: 35188737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of the Dopant Species on the Thermomechanical Material Properties of Thermoelectric Mg
    Castillo-Hernández G; Müller E; de Boor J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid consolidation of powdered materials by induction hot pressing.
    LaLonde AD; Ikeda T; Snyder GJ
    Rev Sci Instrum; 2011 Feb; 82(2):025104. PubMed ID: 21361630
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spark plasma sintering of hydroxyapatite powders.
    Gu YW; Loh NH; Kho KA; Tor SB; Cheang P
    Biomaterials; 2002 Jan; 23(1):37-43. PubMed ID: 11762852
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrahigh Temperature Flash Sintering of Binder-Less Tungsten Carbide within 6 s.
    Deng H; Biesuz M; Vilémová M; Kermani M; Veverka J; Tyrpekl V; Hu C; Grasso S
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coercivity Increase of the Recycled HDDR Nd-Fe-B Powders Doped with DyF
    Ikram A; Mehmood MF; Samardžija Z; Sheridan RS; Awais M; Walton A; Sturm S; Kobe S; Žužek Rožman K
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31071992
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing the Thermoelectric and Mechanical Properties of Bi
    Qiu J; Luo T; Yan Y; Xia F; Yao L; Tan X; Yang D; Tan G; Su X; Wu J; Tang X
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58974-58981. PubMed ID: 34854669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diffusion-controlled formation of Ti2O3 during spark-plasma synthesis.
    Veremchuk I; Antonyshyn I; Candolfi C; Feng X; Burkhardt U; Baitinger M; Zhao JT; Grin Y
    Inorg Chem; 2013 Apr; 52(8):4458-63. PubMed ID: 23517136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive intermediate phase cold sintering in strontium titanate.
    Boston R; Guo J; Funahashi S; Baker AL; Reaney IM; Randall CA
    RSC Adv; 2018 May; 8(36):20372-20378. PubMed ID: 35541645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Processing High-Performance Thermoelectric Materials in a Green Way: A Proof of Concept in Cold Sintered PbTe
    Lu X; Lu W; Gao J; Liu Y; Huang J; Yan P; Fan Y; Jiang W
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37937-37946. PubMed ID: 35960808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spark Plasma Sintering Effect on Thermoelectric Properties of Nanostructured Bismuth Telluride Synthesized by High Energy Ball Milling.
    Pundir SK; Singh S; Jain P
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3902-3908. PubMed ID: 31748093
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Oxygen on Lattice Defects in Single-Crystalline Mg
    Hayashi K; Kawamura S; Hashimoto Y; Akao N; Huang Z; Saito W; Tasaki K; Hayashi K; Matsushita T; Miyazaki Y
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi(1+x)Sn.
    Birkel CS; Douglas JE; Lettiere BR; Seward G; Verma N; Zhang Y; Pollock TM; Seshadri R; Stucky GD
    Phys Chem Chem Phys; 2013 May; 15(18):6990-7. PubMed ID: 23552642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.