These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 36623577)
1. Techno-economic analysis of ionic liquid pre-treatment integrated pyrolysis of biomass for co-production of furfural and levoglucosenone. Halder P; Shah K Bioresour Technol; 2023 Mar; 371():128587. PubMed ID: 36623577 [TBL] [Abstract][Full Text] [Related]
2. Innovative parallel synthesis of 5-nonanone and furfural from lignocellulosic biomass accompanied by deep economic analysis. Ahmad N; Asif MF; Ahmad N; Ahmed U; Abdul Jameel AG J Environ Manage; 2023 Dec; 348():119251. PubMed ID: 37820435 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous production of 1,6-hexanediol, furfural, and high-purity lignin from white birch: Process integration and techno-economic evaluation. Kim H; Lee S; Lee J; Won W Bioresour Technol; 2021 Jul; 331():125009. PubMed ID: 33780837 [TBL] [Abstract][Full Text] [Related]
4. New catalytic strategies for α,ω-diols production from lignocellulosic biomass. He J; Huang K; Barnett KJ; Krishna SH; Alonso DM; Brentzel ZJ; Burt SP; Walker T; Banholzer WF; Maravelias CT; Hermans I; Dumesic JA; Huber GW Faraday Discuss; 2017 Sep; 202():247-267. PubMed ID: 28678237 [TBL] [Abstract][Full Text] [Related]
5. An integrated deep eutectic solvent-ionic liquid-metal catalyst system for lignin and 5-hydroxymethylfurfural production from lignocellulosic biomass: Technoeconomic analysis. Zhao J; Lee J; Wang D Bioresour Technol; 2022 Jul; 356():127277. PubMed ID: 35545207 [TBL] [Abstract][Full Text] [Related]
6. Efficient Synthesis of Furfural from Biomass Using SnCl₄ as Catalyst in Ionic Liquid. Nie Y; Hou Q; Li W; Bai C; Bai X; Ju M Molecules; 2019 Feb; 24(3):. PubMed ID: 30736429 [TBL] [Abstract][Full Text] [Related]
7. Furfural production using ionic liquids: A review. Peleteiro S; Rivas S; Alonso JL; Santos V; Parajó JC Bioresour Technol; 2016 Feb; 202():181-91. PubMed ID: 26708486 [TBL] [Abstract][Full Text] [Related]
8. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid. Zhang L; Yu H; Wang P Bioresour Technol; 2013 May; 136():515-21. PubMed ID: 23567725 [TBL] [Abstract][Full Text] [Related]
9. Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. Wang X; Liu Y; Cui X; Xiao J; Lin G; Chen Y; Yang H; Chen H Waste Manag; 2020 Aug; 114():43-52. PubMed ID: 32673980 [TBL] [Abstract][Full Text] [Related]
10. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose. Zhang T; Li W; Xiao H; Jin Y; Wu S Bioresour Technol; 2022 Jun; 354():127126. PubMed ID: 35398210 [TBL] [Abstract][Full Text] [Related]
11. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Zhang Z; Zhao ZK Bioresour Technol; 2010 Feb; 101(3):1111-4. PubMed ID: 19800219 [TBL] [Abstract][Full Text] [Related]
12. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Zhang L; Yu H; Wang P; Dong H; Peng X Bioresour Technol; 2013 Feb; 130():110-6. PubMed ID: 23306118 [TBL] [Abstract][Full Text] [Related]
13. Boosting levoglucosan and furfural production from corn stalks pyrolysis via electro-assisted seawater pretreatment. Yu H; Zhang F; Li L; Wang H; Sun Y; Jiang E; Xu X Bioresour Technol; 2022 Feb; 346():126478. PubMed ID: 34910973 [TBL] [Abstract][Full Text] [Related]
14. Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Zhang J; Koubaa A; Xing D; Wang H; Wang Y; Liu W; Zhang Z; Wang X; Wang Q Bioresour Technol; 2020 Sep; 312():123586. PubMed ID: 32485612 [TBL] [Abstract][Full Text] [Related]
15. Sustainable lignocellulose fractionation by integrating p-toluenesulfonic acid/pentanol pretreatment with mannitol for efficient production of glucose, native-like lignin, and furfural. Madadi M; Elsayed M; Sun F; Wang J; Karimi K; Song G; Tabatabaei M; Aghbashlo M Bioresour Technol; 2023 Mar; 371():128591. PubMed ID: 36627085 [TBL] [Abstract][Full Text] [Related]
16. Investigation into Lewis and Brønsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. Lee CBTL; Wu TY; Yong KJ; Cheng CK; Siow LF; Jahim JM Sci Total Environ; 2022 Jun; 827():154049. PubMed ID: 35202677 [TBL] [Abstract][Full Text] [Related]
17. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Haeldermans T; Campion L; Kuppens T; Vanreppelen K; Cuypers A; Schreurs S Bioresour Technol; 2020 Dec; 318():124083. PubMed ID: 32916464 [TBL] [Abstract][Full Text] [Related]
18. Toward Economical and Sustainable Production of Renewable Plastic: Integrative System-Level Analyses. Kim H; Kim J; Won W ChemSusChem; 2022 Jul; 15(13):e202200240. PubMed ID: 35438828 [TBL] [Abstract][Full Text] [Related]
19. Kraft lignin fast (catalytic) pyrolysis for the production of high value-added chemicals (HVACs): A techno-economic screening of valorization pathways. Iakovou G; Ipsakis D; Triantafyllidis KS Environ Res; 2024 May; 248():118205. PubMed ID: 38242421 [TBL] [Abstract][Full Text] [Related]
20. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]