These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36623712)

  • 1. Dye labeling for optical imaging biases drug carriers' biodistribution and tumor uptake.
    Schraven S; Rosenhain S; Brueck R; Wiechmann TM; Pola R; Etrych T; Lederle W; Lammers T; Gremse F; Kiessling F
    Nanomedicine; 2023 Feb; 48():102650. PubMed ID: 36623712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging.
    Bastiat G; Pritz CO; Roider C; Fouchet F; Lignières E; Jesacher A; Glueckert R; Ritsch-Marte M; Schrott-Fischer A; Saulnier P; Benoit JP
    J Control Release; 2013 Sep; 170(3):334-42. PubMed ID: 23792117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracers for Fluorescence-Guided Surgery: How Elongation of the Polymethine Chain in Cyanine Dyes Alters the Pharmacokinetics of a Dual-Modality c[RGDyK] Tracer.
    Buckle T; van Willigen DM; Spa SJ; Hensbergen AW; van der Wal S; de Korne CM; Welling MM; van der Poel HG; Hardwick JCH; van Leeuwen FWB
    J Nucl Med; 2018 Jun; 59(6):986-992. PubMed ID: 29449447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.
    Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY
    J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A NIR-remote controlled upconverting nanoparticle: an improved tool for living cell dye-labeling.
    Zheng B; Gong X; Wang H; Wang S; Wang H; Li W; Tan J; Chang J
    Nanotechnology; 2015 Oct; 26(42):425102. PubMed ID: 26422130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled modulation of serum protein binding and biodistribution of asymmetric cyanine dyes by variation of the number of sulfonate groups.
    Hamann FM; Brehm R; Pauli J; Grabolle M; Frank W; Kaiser WA; Fischer D; Resch-Genger U; Hilger I
    Mol Imaging; 2011 Aug; 10(4):258-69. PubMed ID: 21521558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Albumin in Accumulation and Persistence of Tumor-Seeking Cyanine Dyes.
    Usama SM; Park GK; Nomura S; Baek Y; Choi HS; Burgess K
    Bioconjug Chem; 2020 Feb; 31(2):248-259. PubMed ID: 31909595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer.
    Sarparanta M; Pourat J; Carnazza KE; Tang J; Paknejad N; Reiner T; Kostiainen MA; Lewis JS
    Nucl Med Biol; 2020; 80-81():1-12. PubMed ID: 31759312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualisation of real-time oral biodistribution of fluorescent labeled self-microemulsifying drug delivery system of olmesartan medoxomil using optical imaging method.
    Komesli Y; Yildirim Y; Karasulu E
    Drug Metab Pharmacokinet; 2021 Feb; 36():100365. PubMed ID: 33191089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heptamethine carbocyanine dye-mediated near-infrared imaging of canine and human cancers through the HIF-1α/OATPs signaling axis.
    Shi C; Wu JB; Chu GC; Li Q; Wang R; Zhang C; Zhang Y; Kim HL; Wang J; Zhau HE; Pan D; Chung LW
    Oncotarget; 2014 Oct; 5(20):10114-26. PubMed ID: 25361418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intended and Unintended Targeting of Polymeric Nanocarriers: The Case of Modified Poly(glycerol adipate) Nanoparticles.
    Weiss VM; Lucas H; Mueller T; Chytil P; Etrych T; Naolou T; Kressler J; Mäder K
    Macromol Biosci; 2018 Jan; 18(1):. PubMed ID: 29218838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer.
    Maawy AA; Hiroshima Y; Zhang Y; Luiken GA; Hoffman RM; Bouvet M
    J Biomed Opt; 2014; 19(10):101504. PubMed ID: 24887695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited.
    Meng F; Wang J; Ping Q; Yeo Y
    ACS Nano; 2018 Jul; 12(7):6458-6468. PubMed ID: 29920064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of fluorescent dye for tracking biodistribution of paclitaxel in live imaging.
    Shuai Q; Zhao G; Zhang X; Yu B; Lee RJ; Su WK
    Colloids Surf B Biointerfaces; 2019 Sep; 181():872-878. PubMed ID: 31382335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-colonic administration of a polymer-bound NIRF probe for improved colorectal cancer detection during colonoscopy.
    Kogan-Zviagin I; Shamay Y; Nissan A; Sella-Tavor O; Golan M; David A
    J Control Release; 2014 Oct; 192():182-91. PubMed ID: 25008468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balancing Passive and Active Targeting to Different Tumor Compartments Using Riboflavin-Functionalized Polymeric Nanocarriers.
    Tsvetkova Y; Beztsinna N; Baues M; Klein D; Rix A; Golombek SK; Al Rawashdeh W; Gremse F; Barz M; Koynov K; Banala S; Lederle W; Lammers T; Kiessling F
    Nano Lett; 2017 Aug; 17(8):4665-4674. PubMed ID: 28715227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes.
    Zhao N; Zhang C; Zhao Y; Bai B; An J; Zhang H; Wu JB; Shi C
    Oncotarget; 2016 Aug; 7(35):57277-57289. PubMed ID: 27329598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study.
    Sousa-Junior AA; Mendanha SA; Carrião MS; Capistrano G; Próspero AG; Soares GA; Cintra ER; Santos SFO; Zufelato N; Alonso A; Lima EM; Miranda JRA; Silveira-Lacerda EP; Cardoso CG; Bakuzis AF
    Mol Pharm; 2020 Mar; 17(3):837-851. PubMed ID: 31977228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules.
    Simonsson C; Bastiat G; Pitorre M; Klymchenko AS; Béjaud J; Mély Y; Benoit JP
    Eur J Pharm Biopharm; 2016 Jan; 98():47-56. PubMed ID: 26522878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.