These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 36624116)
1. Influence of non-uniform magnetic field on the thermal efficiency hydrodynamic characteristics of nanofluid in double pipe heat exchanger. Azizi Y; Bahramkhoo M; Kazemi A Sci Rep; 2023 Jan; 13(1):407. PubMed ID: 36624116 [TBL] [Abstract][Full Text] [Related]
2. The application of non-uniform magnetic field for thermal enhancement of the nanofluid flow inside the U-turn pipe at solar collectors. Li S; Mao L; Alizadeh A; Zhang X; Mousavi SV Sci Rep; 2023 May; 13(1):8471. PubMed ID: 37231052 [TBL] [Abstract][Full Text] [Related]
3. Application of Nanofluids in Improving the Performance of Double-Pipe Heat Exchangers-A Critical Review. Louis SP; Ushak S; Milian Y; Nemś M; Nemś A Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234220 [TBL] [Abstract][Full Text] [Related]
4. Heat Transfer Enhancement Using Al Bouselsal M; Mebarek-Oudina F; Biswas N; Ismail AAI Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241695 [TBL] [Abstract][Full Text] [Related]
5. Numerical Study of Flow and Heat Transfer Characteristics for Al Nam HT; Lee S; Kong M; Lee S Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138388 [TBL] [Abstract][Full Text] [Related]
6. Thermohydraulic performance investigation of a heat exchanger with combined effect of ribbed insert and Therminol55/MXene+ Al Das L; Aslfattahi N; Habib K; Saidur R; Das A; Kadirgama K Heliyon; 2023 Mar; 9(3):e14283. PubMed ID: 36942246 [TBL] [Abstract][Full Text] [Related]
7. A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger. Onyiriuka EJ; Ighodaro OO; Adelaja AO; Ewim DRE; Bhattacharyya S Heliyon; 2019 Sep; 5(9):e02416. PubMed ID: 31538112 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Overlapped Twisted Tapes Inserted in a Double-Pipe Heat Exchanger Using Two-Phase Nanofluid. Ghalambaz M; Arasteh H; Mashayekhi R; Keshmiri A; Talebizadehsardari P; Yaïci W Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32846914 [TBL] [Abstract][Full Text] [Related]
9. Thermal performance analysis of a flat-plate solar heater with zigzag-shaped pipe using fly ash-Cu hybrid nanofluid: CFD approach. Azimy N; Saffarian MR; Noghrehabadi A Environ Sci Pollut Res Int; 2024 Mar; 31(12):18100-18118. PubMed ID: 36520293 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger. Hamza NFA; Aljabair S Heliyon; 2022 Dec; 8(12):e11950. PubMed ID: 36506374 [TBL] [Abstract][Full Text] [Related]
11. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe. Zhao S; Xu G; Wang N; Zhang X Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29382094 [TBL] [Abstract][Full Text] [Related]
12. CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids. Mukesh Kumar PC; Chandrasekar M Heliyon; 2019 Jul; 5(7):e02030. PubMed ID: 31388569 [TBL] [Abstract][Full Text] [Related]
13. Numerical Study of Nanofluid Irreversibilities in a Heat Exchanger Used with an Aqueous Medium. Ovando-Chacon GE; Ovando-Chacon SL; Rodriguez-Leon A; Diaz-Gonzalez M; Hernandez-Zarate JA; Servin-Martinez A Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285861 [TBL] [Abstract][Full Text] [Related]
14. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes. Sasmito AP; Kurnia JC; Mujumdar AS Nanoscale Res Lett; 2011 May; 6(1):376. PubMed ID: 21711901 [TBL] [Abstract][Full Text] [Related]
15. Numerical study of heat transfer, pressure drop and entropy production characteristics in inclined heat exchangers with uniform heat flux using mango bark/CO Uwadoka O; Adelaja AO; Olakoyejo OT; Fadipe OL; Efe S Heliyon; 2023 Aug; 9(8):e18694. PubMed ID: 37576259 [TBL] [Abstract][Full Text] [Related]
16. Significance of Shape Factor in Heat Transfer Performance of Molybdenum-Disulfide Nanofluid in Multiple Flow Situations; A Comparative Fractional Study. Asifa ; Anwar T; Kumam P; Shah Z; Sitthithakerngkiet K Molecules; 2021 Jun; 26(12):. PubMed ID: 34207000 [TBL] [Abstract][Full Text] [Related]
17. The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes. Kozlova SV; Ryzhkov II Eur Phys J E Soft Matter; 2014 Sep; 37(9):43. PubMed ID: 25260328 [TBL] [Abstract][Full Text] [Related]
18. Entropy generation and thermal analysis of nanofluid flow inside the evacuated tube solar collector. Tabarhoseini SM; Sheikholeslami M Sci Rep; 2022 Jan; 12(1):1380. PubMed ID: 35082336 [TBL] [Abstract][Full Text] [Related]
19. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger. Aghayari R; Maddah H; Zarei M; Dehghani M; Kaskari Mahalle SG Int Sch Res Notices; 2014; 2014():736424. PubMed ID: 27433521 [TBL] [Abstract][Full Text] [Related]
20. Thermal Transmission Comparison of Nanofluids over Stretching Surface under the Influence of Magnetic Field. Arshad M; Karamti H; Awrejcewicz J; Grzelczyk D; Galal AM Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]