These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 36624204)
1. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency. Wang L; Wang W; Miao Y; Peters M; Schultze-Kraft R; Liu G; Chen Z Plant Cell Rep; 2023 Mar; 42(3):575-585. PubMed ID: 36624204 [TBL] [Abstract][Full Text] [Related]
2. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. Fan YL; Zhang XH; Zhong LJ; Wang XY; Jin LS; Lyu SH BMC Plant Biol; 2020 May; 20(1):208. PubMed ID: 32397958 [TBL] [Abstract][Full Text] [Related]
3. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. Luo J; Liu Y; Zhang H; Wang J; Chen Z; Luo L; Liu G; Liu P BMC Plant Biol; 2020 Feb; 20(1):85. PubMed ID: 32087672 [TBL] [Abstract][Full Text] [Related]
4. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406 [TBL] [Abstract][Full Text] [Related]
5. Characterization of phosphate transporter genes and the function of SgPT1 involved in phosphate uptake in Stylosanthes guianensis. An N; Huang J; Xue Y; Liu P; Liu G; Zhu S; Chen Z Plant Physiol Biochem; 2023 Jan; 194():731-741. PubMed ID: 36577197 [TBL] [Abstract][Full Text] [Related]
6. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean. Li C; Zhang H; Wang X; Liao H Plant Cell Rep; 2014 Nov; 33(11):1921-32. PubMed ID: 25097075 [TBL] [Abstract][Full Text] [Related]
7. An Efficient and Reproducible Method for Producing Composite Plants by Agrobacterium rhizogenes-based Hairy Root Transformation. Teng C; Lyu K; Li Q; Li N; Lyu S; Fan Y J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458476 [TBL] [Abstract][Full Text] [Related]
8. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation. Miao Y; Hu X; Wang L; Schultze-Kraft R; Wang W; Chen Z Plant Physiol Biochem; 2024 Mar; 208():108535. PubMed ID: 38503187 [TBL] [Abstract][Full Text] [Related]
9. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development. Ilina EL; Logachov AA; Laplaze L; Demchenko NP; Pawlowski K; Demchenko KN Ann Bot; 2012 Jul; 110(2):479-89. PubMed ID: 22553131 [TBL] [Abstract][Full Text] [Related]
10. AcEXPA1, an α-expansin gene, participates in the aluminum tolerance of carpetgrass (Axonopus compressus) through root growth regulation. Li J; Liu L; Wang L; Rao IM; Wang Z; Chen Z Plant Cell Rep; 2024 Jun; 43(6):159. PubMed ID: 38822842 [TBL] [Abstract][Full Text] [Related]
12. Development of a fast and efficient root transgenic system for functional genomics and genetic engineering in peach. Xu S; Lai E; Zhao L; Cai Y; Ogutu C; Cherono S; Han Y; Zheng B Sci Rep; 2020 Feb; 10(1):2836. PubMed ID: 32071340 [TBL] [Abstract][Full Text] [Related]
14. Use of Chenopodium murale L. transgenic hairy root in vitro culture system as a new tool for allelopathic assays. Mitić N; Dmitrović S; Djordjević M; Zdravković-Korać S; Nikolić R; Raspor M; Djordjević T; Maksimović V; Zivković S; Krstić-Milošević D; Stanišić M; Ninković S J Plant Physiol; 2012 Aug; 169(12):1203-11. PubMed ID: 22749286 [TBL] [Abstract][Full Text] [Related]
15. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Liu PD; Xue YB; Chen ZJ; Liu GD; Tian J J Exp Bot; 2016 Jul; 67(14):4141-54. PubMed ID: 27194738 [TBL] [Abstract][Full Text] [Related]
16. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots. Horn P; Santala J; Nielsen SL; Hühns M; Broer I; Valkonen JP Plant Cell Rep; 2014 Dec; 33(12):1977-92. PubMed ID: 25182479 [TBL] [Abstract][Full Text] [Related]
17. [Hairy root induction and plant regeneration of crownvetch (Coronilla varia L.) transformed by Agrobacterium rhizogenes]. Han XL; Bu HY; Hao JG; Zhao YW; Jia JF Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):107-13. PubMed ID: 16572849 [TBL] [Abstract][Full Text] [Related]
18. An Efficient Huang P; Lu M; Li X; Sun H; Cheng Z; Miao Y; Fu Y; Zhang X Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293115 [TBL] [Abstract][Full Text] [Related]
19. Multi-omics analysis reveals the roles of purple acid phosphatases in organic phosphorus utilization by the tropical legume Stylosanthes guianensis. Luo J; Chen Z; Huang R; Wu Y; Liu C; Cai Z; Dong R; Arango J; Rao IM; Schultze-Kraft R; Liu G; Liu P Plant J; 2024 Feb; 117(3):729-746. PubMed ID: 37932930 [TBL] [Abstract][Full Text] [Related]
20. Regeneration of plants from callus tissues of hairy roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Wang YM; Wang JB; Luo D; Jia JF Cell Res; 2001 Dec; 11(4):279-84. PubMed ID: 11787773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]