BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36624240)

  • 1. Evaluation of soil-vegetation interaction effects on water fluxes revealed by the proxy of model parameter combinations.
    Lotz T; Sun Z; Xue B
    Environ Monit Assess; 2023 Jan; 195(2):283. PubMed ID: 36624240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.
    Sun Z; Lotz T; Chang NB
    J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming equifinality: time-varying analysis of sensitivity and identifiability of SWAT runoff and sediment parameters in an arid and semiarid watershed.
    Wu L; Liu X; Chen J; Yu Y; Ma X
    Environ Sci Pollut Res Int; 2022 May; 29(21):31631-31645. PubMed ID: 35006572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam.
    Nhi PTT; Khoi DN; Trang NTT; Van Ty T; Fang S
    Environ Monit Assess; 2022 Oct; 194(Suppl 2):768. PubMed ID: 36255530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of vegetational cover and the induced impacts on hydrological processes under climate change for a high-diversity watershed of south China.
    Zhang P; Cai Y; He Y; Xie Y; Zhang X; Li Z
    J Environ Manage; 2022 Nov; 322():115963. PubMed ID: 36041299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on hydrological response of runoff to land use change in the Jing River Basin, China.
    Jin T; Zhang X; Xie J; Liang J; Wang T
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):101075-101090. PubMed ID: 37646927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrological responses to land degradation in the Northwest Benin Owena River Basin, Nigeria.
    Aladejana OO; Salami AT; Adetoro OO
    J Environ Manage; 2018 Nov; 225():300-312. PubMed ID: 30098496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.
    Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR
    J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.
    Zhang L; Nan Z; Xu Y; Li S
    PLoS One; 2016; 11(6):e0158394. PubMed ID: 27348224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrological Response to Precipitation and Human Activities-A Case Study in the Zuli River Basin, China.
    Huang C; Yang Q; Huang W; Zhang J; Li Y; Yang Y
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30544582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia.
    Gashaw T; Tulu T; Argaw M; Worqlul AW
    Sci Total Environ; 2018 Apr; 619-620():1394-1408. PubMed ID: 29734616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of land cover and land use change on runoff characteristics.
    Sajikumar N; Remya RS
    J Environ Manage; 2015 Sep; 161():460-468. PubMed ID: 25575849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling.
    Bailey RT; Bieger K; Flores L; Tomer M
    Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The concept, approach, and future research of hydrological connectivity and its assessment at multiscales.
    Zhang Y; Huang C; Zhang W; Chen J; Wang L
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):52724-52743. PubMed ID: 34458974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the capability of SWAT model to predict surface runoff in open cast coal mining areas.
    Singh V; Karan SK; Singh C; Samadder SR
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40073-40083. PubMed ID: 36604397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global separation of plant transpiration from groundwater and streamflow.
    Evaristo J; Jasechko S; McDonnell JJ
    Nature; 2015 Sep; 525(7567):91-4. PubMed ID: 26333467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S.
    Yuan L; Forshay KJ
    PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment.
    Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C
    Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.