These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 36624314)

  • 1. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer.
    Foersch S; Glasner C; Woerl AC; Eckstein M; Wagner DC; Schulz S; Kellers F; Fernandez A; Tserea K; Kloth M; Hartmann A; Heintz A; Weichert W; Roth W; Geppert C; Kather JN; Jesinghaus M
    Nat Med; 2023 Feb; 29(2):430-439. PubMed ID: 36624314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Multistain deep learning as a prognostic and predictive biomarker in colorectal cancer].
    Schulz S; Jesinghaus M; Foersch S
    Pathologie (Heidelb); 2023 Dec; 44(Suppl 3):104-108. PubMed ID: 37987821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.
    Zhao K; Li Z; Yao S; Wang Y; Wu X; Xu Z; Wu L; Huang Y; Liang C; Liu Z
    EBioMedicine; 2020 Nov; 61():103054. PubMed ID: 33039706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An artificial intelligence-based ecological index for prognostic evaluation of colorectal cancer.
    Chen Q; Cai M; Fan X; Liu W; Fang G; Yao S; Xu Y; Li Q; Zhao Y; Zhao K; Liu Z; Chen Z
    BMC Cancer; 2023 Aug; 23(1):763. PubMed ID: 37592224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis.
    Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T
    BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence.
    Wani NA; Kumar R; Bedi J
    Comput Methods Programs Biomed; 2024 Jan; 243():107879. PubMed ID: 37897989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system.
    Zhang Z; Huang L; Li J; Wang P
    BMC Bioinformatics; 2022 Apr; 23(1):124. PubMed ID: 35395711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Tumor Microenvironment and Immune Response in Colorectal Cancer Development and Prognosis.
    Wozniakova M; Skarda J; Raska M
    Pathol Oncol Res; 2022; 28():1610502. PubMed ID: 35936516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer.
    Qiu H; Ding S; Liu J; Wang L; Wang X
    Curr Oncol; 2022 Mar; 29(3):1773-1795. PubMed ID: 35323346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer.
    Brockmoeller S; Echle A; Ghaffari Laleh N; Eiholm S; Malmstrøm ML; Plato Kuhlmann T; Levic K; Grabsch HI; West NP; Saldanha OL; Kouvidi K; Bono A; Heij LR; Brinker TJ; Gögenür I; Quirke P; Kather JN
    J Pathol; 2022 Mar; 256(3):269-281. PubMed ID: 34738636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning transforms colorectal cancer biomarker prediction from histopathology images.
    Ruusuvuori P; Valkonen M; Latonen L
    Cancer Cell; 2023 Sep; 41(9):1543-1545. PubMed ID: 37652005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the prognostic value of CD3 and CD8 cell densities analogous to the Immunoscore® by stage and location of colorectal cancer: an independent patient cohort study.
    Alwers E; Kather JN; Kloor M; Brobeil A; Tagscherer KE; Roth W; Echle A; Amitay EL; Chang-Claude J; Brenner H; Hoffmeister M
    J Pathol Clin Res; 2023 Mar; 9(2):129-136. PubMed ID: 36424650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer.
    Li X; Jonnagaddala J; Yang S; Zhang H; Xu XS
    J Cancer Res Clin Oncol; 2022 Aug; 148(8):1955-1963. PubMed ID: 35332389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer.
    Bao X; Li Q; Chen D; Dai X; Liu C; Tian W; Zhang H; Jin Y; Wang Y; Cheng J; Lai C; Ye C; Xin S; Li X; Su G; Ding Y; Xiong Y; Xie J; Tano V; Wang Y; Fu W; Deng S; Fang W; Sheng J; Ruan J; Zhao P
    Cell Rep Med; 2024 Feb; 5(2):101399. PubMed ID: 38307032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence-based analysis of tumor-infiltrating lymphocyte spatial distribution for colorectal cancer prognosis.
    Cai M; Zhao K; Wu L; Huang Y; Zhao M; Hu Q; Chen Q; Yao S; Li Z; Fan X; Liu Z
    Chin Med J (Engl); 2024 Feb; 137(4):421-430. PubMed ID: 38238158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel prognostic immunoscore based on The Cancer Genome Atlas to predict overall survival in colorectal cancer patients.
    Tang Z; Wu Y; Sun D; Xue X; Qin L
    Biosci Rep; 2021 Oct; 41(10):. PubMed ID: 34608935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting tumor lymphocyte infiltration to predict benefit from immune-checkpoint inhibitors in metastatic colorectal cancer: lessons from the AtezoT RIBE study.
    Moretto R; Rossini D; Catteau A; Antoniotti C; Giordano M; Boccaccino A; Ugolini C; Proietti A; Conca V; Kassambara A; Pietrantonio F; Salvatore L; Lonardi S; Tamberi S; Tamburini E; Poma AM; Fieschi J; Fontanini G; Masi G; Galon J; Cremolini C
    J Immunother Cancer; 2023 Apr; 11(4):. PubMed ID: 37085190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients.
    Wang R; Dai W; Gong J; Huang M; Hu T; Li H; Lin K; Tan C; Hu H; Tong T; Cai G
    J Hematol Oncol; 2022 Jan; 15(1):11. PubMed ID: 35073937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of prognostic immune-related gene signature associated with tumor microenvironment of colorectal cancer.
    Wang Y; Li W; Jin X; Jiang X; Guo S; Xu F; Su X; Wang G; Zhao Z; Gu X
    BMC Cancer; 2021 Aug; 21(1):905. PubMed ID: 34364366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.