BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36624333)

  • 1. A Modern Look at Spiropyrans: From Single Molecules to Smart Materials.
    Kozlenko AS; Ozhogin IV; Pugachev AD; Lukyanova MB; El-Sewify IM; Lukyanov BS
    Top Curr Chem (Cham); 2023 Jan; 381(1):8. PubMed ID: 36624333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2 triggering and controlling orthogonally multiresponsive photochromic systems.
    Darwish TA; Evans RA; James M; Malic N; Triani G; Hanley TL
    J Am Chem Soc; 2010 Aug; 132(31):10748-55. PubMed ID: 20681707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, Photochromic and Luminescent Properties of Ammonium Salts of Spiropyrans.
    Khuzin AA; Galimov DI; Tulyabaev AR; Khuzina LL
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiropyran photoswitches in the context of DNA: synthesis and photochromic properties.
    Brieke C; Heckel A
    Chemistry; 2013 Nov; 19(46):15726-34. PubMed ID: 24115210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemo- and biosensing applications of spiropyran and its derivatives - A review.
    Ali AA; Kharbash R; Kim Y
    Anal Chim Acta; 2020 May; 1110():199-223. PubMed ID: 32278396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: Synthesis, structure, photochromic and biological properties.
    Ozhogin IV; Zolotukhin PV; Mukhanov EL; Rostovtseva IA; Makarova NI; Tkachev VV; Beseda DK; Metelitsa AV; Lukyanov BS
    Bioorg Med Chem Lett; 2021 Jan; 31():127709. PubMed ID: 33242575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiropyrans as molecular optical switches.
    Seefeldt B; Kasper R; Beining M; Mattay J; Arden-Jacob J; Kemnitzer N; Drexhage KH; Heilemann M; Sauer M
    Photochem Photobiol Sci; 2010 Feb; 9(2):213-20. PubMed ID: 20126797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction studies between photochromic spiropyrans and transition metal cations: the curious case of copper.
    Natali M; Giordani S
    Org Biomol Chem; 2012 Feb; 10(6):1162-71. PubMed ID: 22146800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery.
    Razavi B; Abdollahi A; Roghani-Mamaqani H; Salami-Kalajahi M
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110524. PubMed ID: 32228960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking the light-induced isomerization processes and the photostability of spiropyrans embedded in the pores of crystalline nanoporous MOFs
    Schwartz HA; Schaniel D; Ruschewitz U
    Photochem Photobiol Sci; 2020 Oct; 19(10):1433-1441. PubMed ID: 32991663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative.
    Shao N; Zhang Y; Cheung S; Yang R; Chan W; Mo T; Li K; Liu F
    Anal Chem; 2005 Nov; 77(22):7294-303. PubMed ID: 16285678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-binding properties of amidine-substituted spiropyran photoswitches.
    Hammarson M; Nilsson JR; Li S; Lincoln P; Andréasson J
    Chemistry; 2014 Nov; 20(48):15855-62. PubMed ID: 25302848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.
    Petriashvili G; De Santo MP; Devadze L; Zurabishvili T; Sepashvili N; Gary R; Barberi R
    Macromol Rapid Commun; 2016 Mar; 37(6):500-5. PubMed ID: 26864876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.
    Xia H; Xie K; Zou G
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29258220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of bis-spiropyran ligands as dipolar molecule receptors and application to in vivo glutathione fluorescent probes.
    Shao N; Jin J; Wang H; Zheng J; Yang R; Chan W; Abliz Z
    J Am Chem Soc; 2010 Jan; 132(2):725-36. PubMed ID: 20030359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of coumarin-based spiropyran photochromic colorants.
    Chen JR; Wong JB; Kuo PY; Yang DY
    Org Lett; 2008 Nov; 10(21):4823-6. PubMed ID: 18826232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment.
    Pugachev AD; Ozhogin IV; Lukyanova MB; Lukyanov BS; Rostovtseva IA; Dorogan IV; Makarova NI; Tkachev VV; Metelitsa AV; Aldoshin SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118041. PubMed ID: 31955116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-controlled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes.
    Del Canto E; Natali M; Movia D; Giordani S
    Phys Chem Chem Phys; 2012 May; 14(17):6034-43. PubMed ID: 22446851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoregulation between small DNAs and reversible photochromic molecules.
    Wu Z; Zhang L
    Biomater Sci; 2019 Dec; 7(12):4944-4962. PubMed ID: 31650136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the photoinduced switching process of a nitrospiropyran self-assembled monolayer using in situ sum frequency generation spectroscopy.
    Darwish TA; Tong Y; James M; Hanley TL; Peng Q; Ye S
    Langmuir; 2012 Oct; 28(39):13852-60. PubMed ID: 22937910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.