BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 36624376)

  • 1. DM-MOGA: a multi-objective optimization genetic algorithm for identifying disease modules of non-small cell lung cancer.
    Shang J; Zhu X; Sun Y; Li F; Kong X; Liu JX
    BMC Bioinformatics; 2023 Jan; 24(1):13. PubMed ID: 36624376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional gene module identification algorithm in gene expression data based on genetic algorithm and gene ontology.
    Zhang Y; Shi W; Sun Y
    BMC Genomics; 2023 Feb; 24(1):76. PubMed ID: 36797662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Objective Optimization Algorithm to Discover Condition-Specific Modules in Multiple Networks.
    Ma X; Sun P; Zhao J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29240706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA dysregulational synergistic network: discovering microRNA dysregulatory modules across subtypes in non-small cell lung cancers.
    Tran N; Abhyankar V; Nguyen K; Weidanz J; Gao J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 20):504. PubMed ID: 30577741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery.
    Liu Y; Ye X; Yu CY; Shao W; Hou J; Feng W; Zhang J; Huang K
    BMC Bioinformatics; 2021 Oct; 22(Suppl 4):111. PubMed ID: 34689740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K-Module Algorithm: An Additional Step to Improve the Clustering Results of WGCNA Co-Expression Networks.
    Hou J; Ye X; Li C; Wang Y
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33445666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Module Analysis for Gene Coexpression Networks with Network Integration.
    Zhang S; Zhao H; Ng MK
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1146-60. PubMed ID: 26451826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks.
    Wang P; Gao L; Hu Y; Li F
    BMC Bioinformatics; 2018 Oct; 19(1):394. PubMed ID: 30373534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motif-guided sparse decomposition of gene expression data for regulatory module identification.
    Gong T; Xuan J; Chen L; Riggins RB; Li H; Hoffman EP; Clarke R; Wang Y
    BMC Bioinformatics; 2011 Mar; 12():82. PubMed ID: 21426557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of critical genes associated with the development of asthma by co-expression modules construction.
    He LL; Xu F; Zhan XQ; Chen ZH; Shen HH
    Mol Immunol; 2020 Jul; 123():18-25. PubMed ID: 32388106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis.
    Guo L; Mao L; Lu W; Yang J
    Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the co-expression gene modules of non-small cell lung cancer metastases.
    Wang G; Bie F; Li G; Shi J; Zeng Y; Du J
    Cancer Biomark; 2021; 30(3):321-329. PubMed ID: 33337349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active Module Identification From Multilayer Weighted Gene Co-Expression Networks: A Continuous Optimization Approach.
    Li D; Pan Z; Hu G; Anderson G; He S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2239-2248. PubMed ID: 32011261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gene module identification algorithm and its applications to identify gene modules and key genes of hepatocellular carcinoma.
    Zhang Y; Lin Z; Lin X; Zhang X; Zhao Q; Sun Y
    Sci Rep; 2021 Mar; 11(1):5517. PubMed ID: 33750838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana.
    Ruan J; Perez J; Hernandez B; Lei C; Sunter G; Sponsel VM
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S2. PubMed ID: 22168340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing module maps for integrated analysis of heterogeneous biological networks.
    Amar D; Shamir R
    Nucleic Acids Res; 2014 Apr; 42(7):4208-19. PubMed ID: 24497192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Module network inference from a cancer gene expression data set identifies microRNA regulated modules.
    Bonnet E; Tatari M; Joshi A; Michoel T; Marchal K; Berx G; Van de Peer Y
    PLoS One; 2010 Apr; 5(4):e10162. PubMed ID: 20418949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The identification of lung cancer gene-drug module based on multiplex networks algorithm].
    Zhou G; Gao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Dec; 38(6):1111-1117. PubMed ID: 34970894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic.
    Hasankhani A; Bahrami A; Sheybani N; Aria B; Hemati B; Fatehi F; Ghaem Maghami Farahani H; Javanmard G; Rezaee M; Kastelic JP; Barkema HW
    Front Immunol; 2021; 12():789317. PubMed ID: 34975885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.