These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 36624404)
1. Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study. Akai H; Yasaka K; Sugawara H; Tajima T; Kamitani M; Furuta T; Akahane M; Yoshioka N; Ohtomo K; Abe O; Kiryu S BMC Med Imaging; 2023 Jan; 23(1):5. PubMed ID: 36624404 [TBL] [Abstract][Full Text] [Related]
2. Faster acquisition of magnetic resonance imaging sequences of the knee via deep learning reconstruction: a volunteer study. Akai H; Yasaka K; Sugawara H; Furuta T; Tajima T; Kato S; Yamaguchi H; Ohtomo K; Abe O; Kiryu S Clin Radiol; 2024 Jun; 79(6):453-459. PubMed ID: 38614869 [TBL] [Abstract][Full Text] [Related]
3. Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study. Akai H; Yasaka K; Sugawara H; Tajima T; Akahane M; Yoshioka N; Ohtomo K; Abe O; Kiryu S Magn Reson Med Sci; 2023 Jul; 22(3):353-360. PubMed ID: 35811127 [TBL] [Abstract][Full Text] [Related]
4. Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers. Dratsch T; Zäske C; Siedek F; Rauen P; Hokamp NG; Sonnabend K; Maintz D; Bratke G; Iuga A Eur Radiol Exp; 2024 Apr; 8(1):47. PubMed ID: 38616220 [TBL] [Abstract][Full Text] [Related]
5. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging. Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T. Ueda T; Yamamoto K; Yazawa N; Tozawa I; Ikedo M; Yui M; Nagata H; Nomura M; Ozawa Y; Ohno Y Eur Radiol Exp; 2024 Sep; 8(1):103. PubMed ID: 39254920 [TBL] [Abstract][Full Text] [Related]
7. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes. Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861 [TBL] [Abstract][Full Text] [Related]
8. A deep learning-based reconstruction approach for accelerated magnetic resonance image of the knee with compressed sense: evaluation in healthy volunteers. Iuga AI; Rauen PS; Siedek F; Große-Hokamp N; Sonnabend K; Maintz D; Lennartz S; Bratke G Br J Radiol; 2023 Jun; 96(1146):20220074. PubMed ID: 37086077 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional CAIPIRINHA SPACE TSE for 5-Minute High-Resolution MRI of the Knee. Fritz J; Fritz B; Thawait GG; Meyer H; Gilson WD; Raithel E Invest Radiol; 2016 Oct; 51(10):609-17. PubMed ID: 27187045 [TBL] [Abstract][Full Text] [Related]
10. Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography. Yasaka K; Akai H; Sugawara H; Tajima T; Akahane M; Yoshioka N; Kabasawa H; Miyo R; Ohtomo K; Abe O; Kiryu S Jpn J Radiol; 2022 May; 40(5):476-483. PubMed ID: 34851499 [TBL] [Abstract][Full Text] [Related]
11. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging. Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207 [TBL] [Abstract][Full Text] [Related]
12. Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences. Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Miyamoto T; Hirai T J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):277-283. PubMed ID: 36944152 [TBL] [Abstract][Full Text] [Related]
13. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants. Fritz J; Ahlawat S; Demehri S; Thawait GK; Raithel E; Gilson WD; Nittka M Invest Radiol; 2016 Oct; 51(10):666-76. PubMed ID: 27518214 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique. Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240 [TBL] [Abstract][Full Text] [Related]
15. Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland. Sato Y; Ohkuma K Radiol Phys Technol; 2024 Sep; 17(3):756-764. PubMed ID: 38850389 [TBL] [Abstract][Full Text] [Related]
16. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction. Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S Neuroradiology; 2022 Oct; 64(10):2077-2083. PubMed ID: 35918450 [TBL] [Abstract][Full Text] [Related]
17. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers. Dratsch T; Siedek F; Zäske C; Sonnabend K; Rauen P; Terzis R; Hahnfeldt R; Maintz D; Persigehl T; Bratke G; Iuga A Eur Radiol Exp; 2023 Oct; 7(1):66. PubMed ID: 37880546 [TBL] [Abstract][Full Text] [Related]
18. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance. Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N Invest Radiol; 2024 Jul; 59(7):479-488. PubMed ID: 37975732 [TBL] [Abstract][Full Text] [Related]
19. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol. Zerunian M; Pucciarelli F; Caruso D; De Santis D; Polici M; Masci B; Nacci I; Del Gaudio A; Argento G; Redler A; Laghi A Skeletal Radiol; 2024 Jan; 53(1):151-159. PubMed ID: 37369725 [TBL] [Abstract][Full Text] [Related]
20. Deep learning-based reconstruction can improve canine thoracolumbar magnetic resonance image quality and reduce slice thickness. Kang H; Noh D; Lee SK; Choi S; Lee K Vet Radiol Ultrasound; 2023 Nov; 64(6):1063-1070. PubMed ID: 37667979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]