These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36625292)

  • 1. Controlling therapeutic protein expression via inhalation of a butter flavor molecule.
    Bertschi A; Stefanov BA; Xue S; Charpin-El Hamri G; Teixeira AP; Fussenegger M
    Nucleic Acids Res; 2023 Mar; 51(5):e28. PubMed ID: 36625292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16.
    Krüger N; Steinbüchel A
    J Bacteriol; 1992 Jul; 174(13):4391-400. PubMed ID: 1378052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system.
    Krüger N; Oppermann FB; Lorenzl H; Steinbüchel A
    J Bacteriol; 1994 Jun; 176(12):3614-30. PubMed ID: 8206840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis.
    Peng Q; Zhao X; Wen J; Huang M; Zhang J; Song F
    Microbiol Res; 2020 May; 235():126438. PubMed ID: 32088504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Transgene Expression by the Natural Sweetener Xylose.
    Galvan S; Madderson O; Xue S; Teixeira AP; Fussenegger M
    Adv Sci (Weinh); 2022 Dec; 9(34):e2203193. PubMed ID: 36316222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis.
    Zhang X; Zhang R; Bao T; Yang T; Xu M; Li H; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1067-76. PubMed ID: 23836140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine-inducible gene switches controlling experimental diabetes.
    Bojar D; Scheller L; Hamri GC; Xie M; Fussenegger M
    Nat Commun; 2018 Jun; 9(1):2318. PubMed ID: 29921872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic mammalian trigger-controlled bipartite transcription factors.
    Folcher M; Xie M; Spinnler A; Fussenegger M
    Nucleic Acids Res; 2013 Jul; 41(13):e134. PubMed ID: 23685433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bile acid-controlled transgene expression in mammalian cells and mice.
    Rössger K; Charpin-El-Hamri G; Fussenegger M
    Metab Eng; 2014 Jan; 21():81-90. PubMed ID: 24280297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae.
    Kovacikova G; Lin W; Skorupski K
    Mol Microbiol; 2005 Jul; 57(2):420-33. PubMed ID: 15978075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An acetoin-regulated expression system of Bacillus subtilis.
    Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of acetoin and its derivatives in foods.
    Xiao Z; Lu JR
    J Agric Food Chem; 2014 Jul; 62(28):6487-97. PubMed ID: 25000216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An HF-1a/HF-1b/MEF-2 combinatorial element confers cardiac ventricular specificity and established an anterior-posterior gradient of expression.
    Ross RS; Navankasattusas S; Harvey RP; Chien KR
    Development; 1996 Jun; 122(6):1799-809. PubMed ID: 8674419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity studies of acetoin and 2,3-pentanedione administered by inhalation to Wistar Han [Crl:WI(Han)] rats and B6C3F1/N mice.
    National Toxicology Program
    Toxic Rep Ser; 2023 Mar; (98):. PubMed ID: 36999846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Waste to Taste-Efficient Production of the Butter Aroma Compound Acetoin from Low-Value Dairy Side Streams Using a Natural (Nonengineered)
    Liu JM; Chen L; Dorau R; Lillevang SK; Jensen PR; Solem C
    J Agric Food Chem; 2020 May; 68(21):5891-5899. PubMed ID: 32363876
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis.
    Thanh TN; Jürgen B; Bauch M; Liebeke M; Lalk M; Ehrenreich A; Evers S; Maurer KH; Antelmann H; Ernst F; Homuth G; Hecker M; Schweder T
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2227-35. PubMed ID: 20524112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA.
    Grundy FJ; Turinsky AJ; Henkin TM
    J Bacteriol; 1994 Aug; 176(15):4527-33. PubMed ID: 7913927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetic basis underlying variation in production of the flavour compound diacetyl by Lactobacillus rhamnosus strains in milk.
    Lo R; Ho VTT; Bansal N; Turner MS
    Int J Food Microbiol; 2018 Jan; 265():30-39. PubMed ID: 29121515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fully human transgene switch to regulate therapeutic protein production by cooling sensation.
    Bai P; Liu Y; Xue S; Hamri GC; Saxena P; Ye H; Xie M; Fussenegger M
    Nat Med; 2019 Aug; 25(8):1266-1273. PubMed ID: 31285633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.