These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 36625594)
1. The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Yayo J; Rydzak T; Kuil T; Karlsson A; Harding DJ; Guss AM; van Maris AJA Appl Environ Microbiol; 2023 Jan; 89(1):e0175322. PubMed ID: 36625594 [TBL] [Abstract][Full Text] [Related]
2. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase. Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Dash S; Olson DG; Joshua Chan SH; Amador-Noguez D; Lynd LR; Maranas CD Metab Eng; 2019 Sep; 55():161-169. PubMed ID: 31220663 [TBL] [Abstract][Full Text] [Related]
5. Functional Analysis of H Kuil T; Hon S; Yayo J; Foster C; Ravagnan G; Maranas CD; Lynd LR; Olson DG; van Maris AJA Appl Environ Microbiol; 2022 Feb; 88(4):e0185721. PubMed ID: 34936842 [TBL] [Abstract][Full Text] [Related]
6. Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Holwerda EK; Zhou J; Hon S; Stevenson DM; Amador-Noguez D; Lynd LR; van Dijken JP Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978139 [No Abstract] [Full Text] [Related]
7. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Rydzak T; Garcia D; Stevenson DM; Sladek M; Klingeman DM; Holwerda EK; Amador-Noguez D; Brown SD; Guss AM Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329 [TBL] [Abstract][Full Text] [Related]
8. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Beri D; Olson DG; Holwerda EK; Lynd LR FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190292 [TBL] [Abstract][Full Text] [Related]
9. Laboratory Evolution and Reverse Engineering of Yayo J; Kuil T; Olson DG; Lynd LR; Holwerda EK; van Maris AJA Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608285 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum. Cui J; Olson DG; Lynd LR Metab Eng; 2019 Jan; 51():32-42. PubMed ID: 30218716 [TBL] [Abstract][Full Text] [Related]
11. Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum. Rydzak T; Grigoryan M; Cunningham ZJ; Krokhin OV; Ezzati P; Cicek N; Levin DB; Wilkins JA; Sparling R Appl Microbiol Biotechnol; 2014; 98(14):6497-510. PubMed ID: 24841118 [TBL] [Abstract][Full Text] [Related]
12. Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism. Lo J; Zheng T; Olson DG; Ruppertsberger N; Tripathi SA; Tian L; Guss AM; Lynd LR J Bacteriol; 2015 Sep; 197(18):2920-9. PubMed ID: 26124241 [TBL] [Abstract][Full Text] [Related]
13. Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N₂ and H₂ sparging of open-batch cultures of Clostridium thermocellum ATCC 27405. Carere CR; Rydzak T; Cicek N; Levin DB; Sparling R Appl Microbiol Biotechnol; 2014 Mar; 98(6):2829-40. PubMed ID: 24463715 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose. Burton E; Martin VJ Can J Microbiol; 2012 Dec; 58(12):1378-88. PubMed ID: 23210995 [TBL] [Abstract][Full Text] [Related]
15. Ferredoxin:NAD+ Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation. Tian L; Lo J; Shao X; Zheng T; Olson DG; Lynd LR Appl Environ Microbiol; 2016 Dec; 82(24):7134-7141. PubMed ID: 27694237 [TBL] [Abstract][Full Text] [Related]
16. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Lo J; Olson DG; Murphy SJ; Tian L; Hon S; Lanahan A; Guss AM; Lynd LR Metab Eng; 2017 Jan; 39():71-79. PubMed ID: 27989806 [TBL] [Abstract][Full Text] [Related]
17. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Zheng T; Olson DG; Tian L; Bomble YJ; Himmel ME; Lo J; Hon S; Shaw AJ; van Dijken JP; Lynd LR J Bacteriol; 2015 Aug; 197(15):2610-9. PubMed ID: 26013492 [TBL] [Abstract][Full Text] [Related]
18. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B; Biswas R; Rydzak T; Guss AM Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438 [TBL] [Abstract][Full Text] [Related]
19. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity. Kuil T; Yayo J; Pechan J; Küchler J; van Maris AJA Microb Cell Fact; 2022 Dec; 21(1):273. PubMed ID: 36567317 [TBL] [Abstract][Full Text] [Related]
20. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. Lamed R; Zeikus JG J Bacteriol; 1980 Nov; 144(2):569-78. PubMed ID: 7430065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]