These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36625723)

  • 21. Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.
    Buenker RJ; Liebermann HP; Zhang Y; Wu Y; Yan L; Liu C; Qu Y; Wang J
    J Comput Chem; 2013 Apr; 34(11):928-37. PubMed ID: 23345171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical perspectives on non-Born-Oppenheimer effects in chemistry.
    Hammes-Schiffer S
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200377. PubMed ID: 35341306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-Born-Oppenheimer Molecular Dynamics Observed by Coherent Nuclear Wave Packets.
    Kim J; Kim CH; Burger C; Park M; Kling MF; Kim DE; Joo T
    J Phys Chem Lett; 2020 Feb; 11(3):755-761. PubMed ID: 31927968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-fidelity first principles nonadiabaticity: diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics.
    Guan Y; Xie C; Yarkony DR; Guo H
    Phys Chem Chem Phys; 2021 Nov; 23(44):24962-24983. PubMed ID: 34473156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory.
    Tao Z; Yu Q; Roy S; Hammes-Schiffer S
    Acc Chem Res; 2021 Nov; 54(22):4131-4141. PubMed ID: 34726895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.
    Nelson T; Fernandez-Alberti S; Roitberg AE; Tretiak S
    Acc Chem Res; 2014 Apr; 47(4):1155-64. PubMed ID: 24673100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-Born-Oppenheimer electronic and nuclear wavepacket dynamics.
    Yonehara T; Takahashi S; Takatsuka K
    J Chem Phys; 2009 Jun; 130(21):214113. PubMed ID: 19508062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-adiabatic dynamics of molecules in optical cavities.
    Kowalewski M; Bennett K; Mukamel S
    J Chem Phys; 2016 Feb; 144(5):054309. PubMed ID: 26851923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Including Tunneling in Non-Born-Oppenheimer Simulations.
    Zheng J; Meana-Pañeda R; Truhlar DG
    J Phys Chem Lett; 2014 Jun; 5(11):2039-43. PubMed ID: 26273892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry.
    Flick J; Narang P
    J Chem Phys; 2020 Sep; 153(9):094116. PubMed ID: 32891103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Total angular momentum conservation in Ehrenfest dynamics with a truncated basis of adiabatic states.
    Tao Z; Bian X; Wu Y; Rawlinson J; Littlejohn RG; Subotnik JE
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38310474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
    Schaupp T; Engel V
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200385. PubMed ID: 35341310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab initio calculations on the excited states of Na3 cluster to explore beyond Born-Oppenheimer theories: adiabatic to diabatic potential energy surfaces and nuclear dynamics.
    Paul AK; Ray S; Mukhopadhyay D; Adhikari S
    J Chem Phys; 2011 Jul; 135(3):034107. PubMed ID: 21786987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conditional Born-Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine.
    Albareda G; Bofill JM; Tavernelli I; Huarte-Larrañaga F; Illas F; Rubio A
    J Phys Chem Lett; 2015 May; 6(9):1529-35. PubMed ID: 26263307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-Born-Oppenheimer molecular dynamics.
    Jasper AW; Nangia S; Zhu C; Truhlar DG
    Acc Chem Res; 2006 Feb; 39(2):101-8. PubMed ID: 16489729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel photochemistry of molecular polaritons in optical cavities.
    Bennett K; Kowalewski M; Mukamel S
    Faraday Discuss; 2016 Dec; 194():259-282. PubMed ID: 27711849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chaos induced by quantum effect due to breakdown of the Born-Oppenheimer adiabaticity.
    Fujisaki H; Takatsuka K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066221. PubMed ID: 11415220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupled Electron-Nuclear Dynamics Induced and Monitored with Femtosecond Soft X-ray Pulses in the Amino Acid Glycine.
    Schwickert D; Przystawik A; Diaman D; Kip D; Marangos JP; Laarmann T
    J Phys Chem A; 2024 Feb; 128(6):989-995. PubMed ID: 38315166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule Systems.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Dec; 19(24):9278-9289. PubMed ID: 38084914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.