These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36625780)

  • 1. Conformational Search for the Building Block of Proteins Based on the Gradient Gravitational Search Algorithm (ConfGGS) Using Force Fields: CHARMM, AMBER, and OPLS-AA.
    Pradhan R; Panigrahi S; Sahu PK
    J Chem Inf Model; 2023 Jan; 63(2):670-690. PubMed ID: 36625780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F; Han W; Wu YD
    Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9.
    Roterman IK; Gibson KD; Scheraga HA
    J Biomol Struct Dyn; 1989 Dec; 7(3):391-419. PubMed ID: 2627293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Differences between Current Molecular Dynamics Force Fields To Represent Local Properties of Intrinsically Disordered Proteins.
    Yu L; Li DW; Brüschweiler R
    J Phys Chem B; 2021 Jan; 125(3):798-804. PubMed ID: 33444020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addition of side chains to a known backbone with defined side-chain centroids.
    Kaźmierkiewicz R; Liwo A; Scheraga HA
    Biophys Chem; 2003; 100(1-3):261-80. PubMed ID: 12646370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic disorder in the Protein Data Bank.
    Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK
    J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of different force fields on the structural character of α synuclein β-hairpin peptide (35-56) in aqueous environment.
    Kundu S
    J Biomol Struct Dyn; 2018 Feb; 36(2):302-317. PubMed ID: 28024449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests.
    Roterman IK; Lambert MH; Gibson KD; Scheraga HA
    J Biomol Struct Dyn; 1989 Dec; 7(3):421-53. PubMed ID: 2627294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How accurately do force fields represent protein side chain ensembles?
    Petrović D; Wang X; Strodel B
    Proteins; 2018 Sep; 86(9):935-944. PubMed ID: 29790608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the Molecular Interactions Stabilizing the Structure of α-synuclein Fibril: An In silico Study.
    Sanjeev A; Mattaparthi VSK
    Cent Nerv Syst Agents Med Chem; 2017; 17(3):209-218. PubMed ID: 28460628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins.
    Arnautova YA; Abagyan R; Totrov M
    J Chem Theory Comput; 2015 May; 11(5):2167-2186. PubMed ID: 25999804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields.
    Smith MD; Rao JS; Segelken E; Cruz L
    J Chem Inf Model; 2015 Dec; 55(12):2587-95. PubMed ID: 26629886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein structure prediction using the evolutionary algorithm USPEX.
    Rachitskii P; Kruglov I; Finkelstein AV; Oganov AR
    Proteins; 2023 Jul; 91(7):933-943. PubMed ID: 36780132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino-acid-dependent main-chain torsion-energy terms for protein systems.
    Sakae Y; Okamoto Y
    J Chem Phys; 2013 Feb; 138(6):064103. PubMed ID: 23425457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realistic sampling of amino acid geometries for a multipolar polarizable force field.
    Hughes TJ; Cardamone S; Popelier PL
    J Comput Chem; 2015 Sep; 36(24):1844-57. PubMed ID: 26235784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid fibrils prepared using an acetylated and methyl amidated peptide model of the α-Synuclein NAC 71-82 amino acid stretch contain an additional cross-β structure also found in prion proteins.
    Näsström T; Andersson PO; Lejon C; Karlsson BCG
    Sci Rep; 2019 Nov; 9(1):15949. PubMed ID: 31685848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for optimizing the structure alphabet sequences of proteins.
    Dong QW; Wang XL; Lin L
    Comput Biol Med; 2007 Nov; 37(11):1610-6. PubMed ID: 17493604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.