These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36625881)

  • 1. Full Implementation, Optimization, and Evaluation of a Range-Separated Local Hybrid Functional with Wide Accuracy for Ground and Excited States.
    Fürst S; Haasler M; Grotjahn R; Kaupp M
    J Chem Theory Comput; 2023 Jan; ():. PubMed ID: 36625881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Local Hybrid Functional with Wide Applicability and Good Balance between (De)Localization and Left-Right Correlation.
    Haasler M; Maier TM; Grotjahn R; Gückel S; Arbuznikov AV; Kaupp M
    J Chem Theory Comput; 2020 Sep; 16(9):5645-5657. PubMed ID: 32697913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies.
    Maier TM; Bahmann H; Arbuznikov AV; Kaupp M
    J Chem Phys; 2016 Feb; 144(7):074106. PubMed ID: 26896975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning from the 4-(dimethylamino)benzonitrile twist: Two-parameter range-separated local hybrid functional with high accuracy for triplet and charge-transfer excitations.
    Grotjahn R
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37909451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the Next Generation of Density Functionals: Escaping the Zero-Sum Game by Using the Exact-Exchange Energy Density.
    Kaupp M; Wodyński A; Arbuznikov AV; Fürst S; Schattenberg CJ
    Acc Chem Res; 2024 Jul; 57(13):1815-1826. PubMed ID: 38905497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a correct treatment of core properties with local hybrid functionals.
    Haasler M; Maier TM; Kaupp M
    J Comput Chem; 2023 Dec; 44(32):2461-2477. PubMed ID: 37635647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of Local Hybrid Functionals for Excited States: Structures, Fluorescence, Phosphorescence, and Vibronic Spectra.
    Grotjahn R; Kaupp M
    J Chem Theory Comput; 2020 Sep; 16(9):5821-5834. PubMed ID: 32698580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Range-Separated Local Hybrid Functionals with Small Fractional-Charge and Fractional-Spin Errors: Escaping the Zero-Sum Game of DFT Functionals.
    Fürst S; Kaupp M; Wodyński A
    J Chem Theory Comput; 2023 Dec; 19(23):8639-8653. PubMed ID: 37972297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation and First Evaluation of Strong-Correlation-Corrected Local Hybrid Functionals for the Calculation of NMR Shieldings and Shifts.
    Schattenberg CJ; Kaupp M
    J Phys Chem A; 2024 Mar; 128(11):2253-2271. PubMed ID: 38456430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties.
    Verma P; Wang Y; Ghosh S; He X; Truhlar DG
    J Phys Chem A; 2019 Apr; 123(13):2966-2990. PubMed ID: 30707029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functionals with broad applicability in chemistry.
    Zhao Y; Truhlar DG
    Acc Chem Res; 2008 Feb; 41(2):157-67. PubMed ID: 18186612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation and Validation of Local Hybrid Functionals with Calibrated Exchange-Energy Densities for Nuclear Shielding Constants.
    Schattenberg CJ; Kaupp M
    J Phys Chem A; 2021 Apr; 125(12):2697-2707. PubMed ID: 33730855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Local Hybrid Functionals for Electric Properties: Dipole Moments and Static and Dynamic Polarizabilities.
    Grotjahn R; Lauter GJ; Haasler M; Kaupp M
    J Phys Chem A; 2020 Oct; 124(40):8346-8358. PubMed ID: 32892622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of hybrid functionals for singlet and triplet excitations: Why do some local hybrid functionals perform so well for triplet excitation energies?
    Grotjahn R; Kaupp M
    J Chem Phys; 2021 Sep; 155(12):124108. PubMed ID: 34598568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4.
    Santra G; Sylvetsky N; Martin JML
    J Phys Chem A; 2019 Jun; 123(24):5129-5143. PubMed ID: 31136709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excited-State Properties for Extended Systems: Efficient Hybrid Density Functional Methods.
    Hehn AS; Sertcan B; Belleflamme F; Chulkov SK; Watkins MB; Hutter J
    J Chem Theory Comput; 2022 Jul; 18(7):4186-4202. PubMed ID: 35759470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.
    Rohrdanz MA; Martins KM; Herbert JM
    J Chem Phys; 2009 Feb; 130(5):054112. PubMed ID: 19206963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Evaluation of Modern Density Functional Methods for the Computation of NMR Shifts of 3d Transition-Metal Nuclei.
    Schattenberg CJ; Lehmann M; Bühl M; Kaupp M
    J Chem Theory Comput; 2022 Jan; 18(1):273-292. PubMed ID: 34968062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals.
    Körzdörfer T; Brédas JL
    Acc Chem Res; 2014 Nov; 47(11):3284-91. PubMed ID: 24784485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds.
    Zhang W; Truhlar DG; Tang M
    J Chem Theory Comput; 2013 Sep; 9(9):3965-77. PubMed ID: 26592392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.