These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36625996)

  • 1. Heart function grading evaluation based on heart sounds and convolutional neural networks.
    Chen X; Guo X; Zheng Y; Lv C
    Phys Eng Sci Med; 2023 Mar; 46(1):279-288. PubMed ID: 36625996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automatic approach for heart failure typing based on heart sounds and convolutional recurrent neural networks.
    Wang H; Guo X; Zheng Y; Yang Y
    Phys Eng Sci Med; 2022 Jun; 45(2):475-485. PubMed ID: 35347667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of heart sounds based on the combination of the modified frequency wavelet transform and convolutional neural network.
    Chen Y; Wei S; Zhang Y
    Med Biol Eng Comput; 2020 Sep; 58(9):2039-2047. PubMed ID: 32638275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental Heart Sound Classification using the Continuous Wavelet Transform and Convolutional Neural Networks.
    Meintjes A; Lowe A; Legget M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():409-412. PubMed ID: 30440420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Heart Sound Analysis for Left Ventricular Diastolic Dysfunction Diagnosis.
    Yang Y; Guo XM; Wang H; Zheng YN
    Diagnostics (Basel); 2021 Dec; 11(12):. PubMed ID: 34943586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings.
    Alkhodari M; Fraiwan L
    Comput Methods Programs Biomed; 2021 Mar; 200():105940. PubMed ID: 33494031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of valvular heart diseases combining orthogonal non-negative matrix factorization and convolutional neural networks in PCG signals.
    Torre-Cruz J; Canadas-Quesada F; Ruiz-Reyes N; Vera-Candeas P; Garcia-Galan S; Carabias-Orti J; Ranilla J
    J Biomed Inform; 2023 Sep; 145():104475. PubMed ID: 37595770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Classification of heart sound signals in congenital heart disease based on convolutional neural network].
    Tan Z; Wang W; Zong R; Pan J; Yang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):728-736. PubMed ID: 31631620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of exercise sudden death in rabbit exhaustive swimming using deep neural network.
    Zhang Y; Zheng Y; Wang M; Guo X
    Biomed Eng Online; 2021 Aug; 20(1):87. PubMed ID: 34461905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Convolutional Neural Networks for Heart Sound Segmentation.
    Renna F; Oliveira J; Coimbra MT
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2435-2445. PubMed ID: 30668487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks.
    Deng M; Meng T; Cao J; Wang S; Zhang J; Fan H
    Neural Netw; 2020 Oct; 130():22-32. PubMed ID: 32589588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform.
    Toma TI; Choi S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network.
    Fayaz M; Torokeldiev N; Turdumamatov S; Qureshi MS; Qureshi MB; Gwak J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.
    Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y
    Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular Disease Recognition Based on Heartbeat Segmentation and Selection Process.
    Boulares M; Alotaibi R; AlMansour A; Barnawi A
    Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heart sound recognition technology based on convolutional neural network.
    Huai X; Kitada S; Choi D; Siriaraya P; Kuwahara N; Ashihara T
    Inform Health Soc Care; 2021 Sep; 46(3):320-332. PubMed ID: 33818274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Recognition of S1 and S2 heart sounds with two-stream convolutional neural networks].
    Shen Y; Wang X; Tang M; Liang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Feb; 38(1):138-144. PubMed ID: 33899438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent vs Non-Recurrent Convolutional Neural Networks for Heart Sound Classification.
    Gharehbaghi A; Partovi E; Babic A
    Stud Health Technol Inform; 2023 Jun; 305():436-439. PubMed ID: 37387059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkinson's disease classification with CWNN: Using wavelet transformations and IMU data fusion for improved accuracy.
    Gourrame K; Griškevičius J; Haritopoulos M; Lukšys D; Jatužis D; Kaladytė-Lokominienė R; Bunevičiūtė R; Mickutė G
    Technol Health Care; 2023; 31(6):2447-2455. PubMed ID: 37955069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.