BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 36626328)

  • 21. A Bayesian factorization method to recover single-cell RNA sequencing data.
    Wen ZH; Langsam JL; Zhang L; Shen W; Zhou X
    Cell Rep Methods; 2022 Jan; 2(1):100133. PubMed ID: 35474868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data.
    Xu J; Zhang A; Liu F; Zhang X
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37004161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data.
    Holland CH; Tanevski J; Perales-Patón J; Gleixner J; Kumar MP; Mereu E; Joughin BA; Stegle O; Lauffenburger DA; Heyn H; Szalai B; Saez-Rodriguez J
    Genome Biol; 2020 Feb; 21(1):36. PubMed ID: 32051003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scINRB: single-cell gene expression imputation with network regularization and bulk RNA-seq data.
    Kang Y; Zhang H; Guan J
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38600665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data.
    Stock M; Popp N; Fiorentino J; Scialdone A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Network embedding-based representation learning for single cell RNA-seq data.
    Li X; Chen W; Chen Y; Zhang X; Gu J; Zhang MQ
    Nucleic Acids Res; 2017 Nov; 45(19):e166. PubMed ID: 28977434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
    Kumar N; Mishra B; Athar M; Mukhtar S
    Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data.
    Ng GYL; Tan SC; Ong CS
    PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating imputation methods for single-cell RNA-seq data.
    Cheng Y; Ma X; Yuan L; Sun Z; Wang P
    BMC Bioinformatics; 2023 Jul; 24(1):302. PubMed ID: 37507764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms.
    Malekpour SA; Haghverdi L; Sadeghi M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38653489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
    Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I
    Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks.
    Zinati Y; Takiddeen A; Emad A
    Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.