These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36626359)

  • 1. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat.
    Sigalas PP; Buchner P; Thomas SG; Jamois F; Arkoun M; Yvin JC; Bennett MJ; Hawkesford MJ
    J Exp Bot; 2023 Mar; 74(6):1890-1910. PubMed ID: 36626359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of the cytochrome CYP711A5 gene reveals MAX1 redundancy in rice strigolactone biosynthesis.
    Wang JY; Chen GE; Braguy J; Jamil M; Berqdar L; Al-Babili S
    J Plant Physiol; 2023 Aug; 287():154057. PubMed ID: 37531662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.
    Abe S; Sado A; Tanaka K; Kisugi T; Asami K; Ota S; Kim HI; Yoneyama K; Xie X; Ohnishi T; Seto Y; Yamaguchi S; Akiyama K; Yoneyama K; Nomura T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18084-9. PubMed ID: 25425668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone.
    Zhang Y; Cheng X; Wang Y; Díez-Simón C; Flokova K; Bimbo A; Bouwmeester HJ; Ruyter-Spira C
    New Phytol; 2018 Jul; 219(1):297-309. PubMed ID: 29655242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis.
    Brewer PB; Yoneyama K; Filardo F; Meyers E; Scaffidi A; Frickey T; Akiyama K; Seto Y; Dun EA; Cremer JE; Kerr SC; Waters MT; Flematti GR; Mason MG; Weiller G; Yamaguchi S; Nomura T; Smith SM; Yoneyama K; Beveridge CA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6301-6. PubMed ID: 27194725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis.
    Zhang Y; van Dijk AD; Scaffidi A; Flematti GR; Hofmann M; Charnikhova T; Verstappen F; Hepworth J; van der Krol S; Leyser O; Smith SM; Zwanenburg B; Al-Babili S; Ruyter-Spira C; Bouwmeester HJ
    Nat Chem Biol; 2014 Dec; 10(12):1028-33. PubMed ID: 25344813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis.
    Yoneyama K; Mori N; Sato T; Yoda A; Xie X; Okamoto M; Iwanaga M; Ohnishi T; Nishiwaki H; Asami T; Yokota T; Akiyama K; Yoneyama K; Nomura T
    New Phytol; 2018 Jun; 218(4):1522-1533. PubMed ID: 29479714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse Roles of MAX1 Homologues in Rice.
    Marzec M; Situmorang A; Brewer PB; Brąszewska A
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33202900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2.
    Challis RJ; Hepworth J; Mouchel C; Waites R; Leyser O
    Plant Physiol; 2013 Apr; 161(4):1885-902. PubMed ID: 23424248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a Prunus MAX1 homolog as a unique strigol synthase.
    Wu S; Zhou A; Hiugano K; Yoda A; Xie X; Yamane K; Miura K; Nomura T; Li Y
    New Phytol; 2023 Sep; 239(5):1819-1833. PubMed ID: 37292030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones.
    Waters MT; Brewer PB; Bussell JD; Smith SM; Beveridge CA
    Plant Physiol; 2012 Jul; 159(3):1073-85. PubMed ID: 22623516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Zhang H; Hua R; Wang X; Wu H; Ou H; Lu X; Huang Y; Liu D; Sui S
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strigolactones, a novel carotenoid-derived plant hormone.
    Al-Babili S; Bouwmeester HJ
    Annu Rev Plant Biol; 2015; 66():161-86. PubMed ID: 25621512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AtMYBS1 negatively regulates heat tolerance by directly repressing the expression of MAX1 required for strigolactone biosynthesis in Arabidopsis.
    Li X; Lu J; Zhu X; Dong Y; Liu Y; Chu S; Xiong E; Zheng X; Jiao Y
    Plant Commun; 2023 Nov; 4(6):100675. PubMed ID: 37608548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strigolactones regulate sepal senescence in Arabidopsis.
    Xu X; Jibran R; Wang Y; Dong L; Flokova K; Esfandiari A; McLachlan ARG; Heiser A; Sutherland-Smith AJ; Brummell DA; Bouwmeester HJ; Dijkwel PP; Hunter DA
    J Exp Bot; 2021 Jul; 72(15):5462-5477. PubMed ID: 33970249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.
    Katyayini NU; Rinne PILH; van der Schoot C
    Plant Cell Physiol; 2019 Dec; 60(12):2797-2811. PubMed ID: 31504881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition.
    Ito S; Ito K; Abeta N; Takahashi R; Sasaki Y; Yajima S
    Plant Signal Behav; 2016; 11(1):e1126031. PubMed ID: 26653175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana.
    Richmond BL; Coelho CL; Wilkinson H; McKenna J; Ratchinski P; Schwarze M; Frost M; Lagunas B; Gifford ML
    Physiol Plant; 2022 Mar; 174(2):e13681. PubMed ID: 35362177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca).
    Wu H; Li H; Chen H; Qi Q; Ding Q; Xue J; Ding J; Jiang X; Hou X; Li Y
    BMC Plant Biol; 2019 Feb; 19(1):73. PubMed ID: 30764758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.