These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36626547)

  • 1. Abiotic stress experiments need a reality check to improve translation to the field.
    Plessis A
    J Exp Bot; 2023 Mar; 74(6):1741-1744. PubMed ID: 36626547
    [No Abstract]   [Full Text] [Related]  

  • 2. Genomics approaches for crop improvement against abiotic stress.
    Akpınar BA; Lucas SJ; Budak H
    ScientificWorldJournal; 2013; 2013():361921. PubMed ID: 23844392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing.
    Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioengineering for salinity tolerance in plants: state of the art.
    Agarwal PK; Shukla PS; Gupta K; Jha B
    Mol Biotechnol; 2013 May; 54(1):102-23. PubMed ID: 22539206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review.
    Debbarma J; Sarki YN; Saikia B; Boruah HPD; Singha DL; Chikkaputtaiah C
    Mol Biotechnol; 2019 Feb; 61(2):153-172. PubMed ID: 30600447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase.
    Fan W; Zhang M; Zhang H; Zhang P
    PLoS One; 2012; 7(5):e37344. PubMed ID: 22615986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines in response to abiotic stress tolerance through transgenic approaches.
    Pathak MR; Teixeira da Silva JA; Wani SH
    GM Crops Food; 2014; 5(2):87-96. PubMed ID: 24710064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving photosynthesis, plant productivity and abiotic stress tolerance - current trends and future perspectives.
    Nowicka B; Ciura J; Szymańska R; Kruk J
    J Plant Physiol; 2018 Dec; 231():415-433. PubMed ID: 30412849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AtSIEK, an EXD1-like protein with KH domain, involves in salt stress response by interacting with FRY2/CPL1.
    Zhang X; Xie Q; Xiang L; Lei Z; Huang Q; Zhang J; Cai M; Chen T
    Int J Biol Macromol; 2023 Apr; 233():123369. PubMed ID: 36693612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress.
    Xu Z; Gongbuzhaxi ; Wang C; Xue F; Zhang H; Ji W
    Plant Physiol Biochem; 2015 Nov; 96():356-63. PubMed ID: 26352804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.
    Mao X; Chen S; Li A; Zhai C; Jing R
    PLoS One; 2014; 9(1):e84359. PubMed ID: 24427285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The response of transgenic Brassica species to salt stress: a review.
    Shah N; Anwar S; Xu J; Hou Z; Salah A; Khan S; Gong J; Shang Z; Qian L; Zhang C
    Biotechnol Lett; 2018 Aug; 40(8):1159-1165. PubMed ID: 29858710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into plant annexins function in abiotic and biotic stress tolerance.
    Saad RB; Ben Romdhane W; Ben Hsouna A; Mihoubi W; Harbaoui M; Brini F
    Plant Signal Behav; 2020; 15(1):1699264. PubMed ID: 31822147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.
    Qin Y; Tian Y; Liu X
    Biochem Biophys Res Commun; 2015 Aug; 464(2):428-33. PubMed ID: 26106823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses.
    Naing AH; Kim CK
    Physiol Plant; 2021 Jul; 172(3):1711-1723. PubMed ID: 33605458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of melatonin in abiotic stress resistance in plants.
    Zhang N; Sun Q; Zhang H; Cao Y; Weeda S; Ren S; Guo YD
    J Exp Bot; 2015 Feb; 66(3):647-56. PubMed ID: 25124318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging.
    Zuo ZF; Kang HG; Hong QC; Park MY; Sun HJ; Kim J; Song PS; Lee HY
    Plant Mol Biol; 2020 Mar; 102(4-5):447-462. PubMed ID: 31898148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z
    Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression.
    Kim JH; Lim SD; Jang CS
    Plant Mol Biol; 2020 Jun; 103(3):235-252. PubMed ID: 32206999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.