These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36626824)

  • 1. Classical Quantum Friction at Water-Carbon Interfaces.
    Bui AT; Thiemann FL; Michaelides A; Cox SJ
    Nano Lett; 2023 Jan; 23(2):580-587. PubMed ID: 36626824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuation-induced quantum friction in nanoscale water flows.
    Kavokine N; Bocquet ML; Bocquet L
    Nature; 2022 Feb; 602(7895):84-90. PubMed ID: 35110760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron cooling in graphene enhanced by plasmon-hydron resonance.
    Yu X; Principi A; Tielrooij KJ; Bonn M; Kavokine N
    Nat Nanotechnol; 2023 Aug; 18(8):898-904. PubMed ID: 37349505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous friction of supercooled glycerol on mica.
    Lizée M; Coquinot B; Mariette G; Siria A; Bocquet L
    Nat Commun; 2024 Jul; 15(1):6129. PubMed ID: 39033119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impart of Heterogeneous Charge Polarization and Distribution on Friction at Water-Graphene Interfaces: a Density-Functional-Theory based Machine Learning Study.
    Li H; Guo W; Guo Y
    J Phys Chem Lett; 2024 Jun; 15(25):6585-6591. PubMed ID: 38885449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface.
    Voïtchovsky K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022407. PubMed ID: 24032849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical model for water hydration on nanosurfaces: from friction to hydrophilicity and hydrophobicity.
    Zhang S; Wang Z; Ding C; Lu H; Qu Y; Li YQ; Zhao M; Li W
    Phys Chem Chem Phys; 2023 Jul; 25(29):19788-19794. PubMed ID: 37449776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent approach for electrical resistivity within Ziman's theory from solid state to hot dense plasma: Application to aluminum.
    Wetta N; Pain JC
    Phys Rev E; 2020 Nov; 102(5-1):053209. PubMed ID: 33327124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the Molecular Polarization Response of Liquid Water Interfaces at Heterogeneously Charged Surfaces.
    Shin S; Willard AP
    J Chem Theory Comput; 2023 Mar; 19(6):1843-1852. PubMed ID: 36866865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective modes and quantum effects in two-dimensional nanofluidic channels.
    Coquinot B; Becker M; Netz RR; Bocquet L; Kavokine N
    Faraday Discuss; 2024 Feb; 249(0):162-180. PubMed ID: 37779420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined Water's Dielectric Constant Reduction Is Due to the Surrounding Low Dielectric Media and Not to Interfacial Molecular Ordering.
    Olivieri JF; Hynes JT; Laage D
    J Phys Chem Lett; 2021 May; 12(17):4319-4326. PubMed ID: 33914550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge/mass dynamic structure factors of water and applications to dielectric friction and electroacoustic conversion.
    Sedlmeier F; Shadkhoo S; Bruinsma R; Netz RR
    J Chem Phys; 2014 Feb; 140(5):054512. PubMed ID: 24511957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tribology of thin wetting films between bubble and moving solid surface.
    Karakashev SI; Stöckelhuber KW; Tsekov R; Phan CM; Heinrich G
    Adv Colloid Interface Sci; 2014 Aug; 210():39-46. PubMed ID: 24200087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Dependent Friction Effects on Vibrational Infrared Frequencies and Line Shapes of Liquid Water.
    Brünig FN; Geburtig O; Canal AV; Kappler J; Netz RR
    J Phys Chem B; 2022 Feb; 126(7):1579-1589. PubMed ID: 35167754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature shear modulus changes in solid 4He and connection to supersolidity.
    Day J; Beamish J
    Nature; 2007 Dec; 450(7171):853-6. PubMed ID: 18064007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface roughness on shear viscosity.
    Papanikolaou M; Frank M; Drikakis D
    Phys Rev E; 2017 Mar; 95(3-1):033108. PubMed ID: 28415275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces.
    Loche P; Scalfi L; Ali Amu M; Schullian O; Bonthuis DJ; Rotenberg B; Netz RR
    J Chem Phys; 2022 Sep; 157(9):094707. PubMed ID: 36075721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.