These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36626913)
1. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature. Zhang M; Xu T; Wang D; Yao T; Xu Z; Liu Q; Shen L; Yu Y Adv Mater; 2023 Jun; 35(23):e2209963. PubMed ID: 36626913 [TBL] [Abstract][Full Text] [Related]
2. 3D Printing of NiCoP/Ti Yu L; Li W; Wei C; Yang Q; Shao Y; Sun J Nanomicro Lett; 2020 Jul; 12(1):143. PubMed ID: 34138137 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery. He H; Luo D; Zeng L; He J; Li X; Yu H; Zhang C Sci Bull (Beijing); 2022 Jun; 67(12):1253-1263. PubMed ID: 36546155 [TBL] [Abstract][Full Text] [Related]
4. 3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Yao B; Chandrasekaran S; Zhang H; Ma A; Kang J; Zhang L; Lu X; Qian F; Zhu C; Duoss EB; Spadaccini CM; Worsley MA; Li Y Adv Mater; 2020 Feb; 32(8):e1906652. PubMed ID: 31951066 [TBL] [Abstract][Full Text] [Related]
5. 3D Printed Nitrogen-Doped Thick Carbon Architectures for Supercapacitor: Ink Rheology and Electrochemical Performance. Zhou G; Li MC; Liu C; Liu C; Li Z; Mei C Adv Sci (Weinh); 2023 Apr; 10(10):e2206320. PubMed ID: 36748294 [TBL] [Abstract][Full Text] [Related]
6. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. Wang J; Sun Q; Gao X; Wang C; Li W; Holness FB; Zheng M; Li R; Price AD; Sun X; Sham TK; Sun X ACS Appl Mater Interfaces; 2018 Nov; 10(46):39794-39801. PubMed ID: 30372018 [TBL] [Abstract][Full Text] [Related]
7. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview. Zeng L; Ling S; Du D; He H; Li X; Zhang C Adv Sci (Weinh); 2023 Nov; 10(32):e2303716. PubMed ID: 37740446 [TBL] [Abstract][Full Text] [Related]
8. 3D Printed Template-Assisted Assembly of Additive-Free Ti Yang C; Wu X; Xia H; Zhou J; Wu Y; Yang R; Zhou G; Qiu L ACS Nano; 2022 Feb; 16(2):2699-2710. PubMed ID: 35084815 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing of Porous Nitrogen-Doped Ti Fan Z; Wei C; Yu L; Xia Z; Cai J; Tian Z; Zou G; Dou SX; Sun J ACS Nano; 2020 Jan; 14(1):867-876. PubMed ID: 31898892 [TBL] [Abstract][Full Text] [Related]
10. Flexible quasi-solid-state zinc-ion hybrid supercapacitor based on carbon cloths displays ultrahigh areal capacitance. Zhang Y; Wang P; Dong X; Jiang H; Cui M; Meng C Fundam Res; 2023 Mar; 3(2):288-297. PubMed ID: 38932920 [TBL] [Abstract][Full Text] [Related]
11. A Multi-Scale Structural Engineering Strategy for High-Performance MXene Hydrogel Supercapacitor Electrode. Huang X; Huang J; Yang D; Wu P Adv Sci (Weinh); 2021 Sep; 8(18):e2101664. PubMed ID: 34338445 [TBL] [Abstract][Full Text] [Related]
12. NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance. Kong M; Wang Z; Wang W; Ma M; Liu D; Hao S; Kong R; Du G; Asiri AM; Yao Y; Sun X Chemistry; 2017 Mar; 23(18):4435-4441. PubMed ID: 28295716 [TBL] [Abstract][Full Text] [Related]
13. Two-Dimensional Materials for High-Energy Solid-State Asymmetric Pseudocapacitors with High Mass Loadings. Chodankar NR; Patil SJ; Rama Raju GS; Lee DW; Dubal DP; Huh YS; Han YK ChemSusChem; 2020 Mar; 13(6):1582-1592. PubMed ID: 31654465 [TBL] [Abstract][Full Text] [Related]
14. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance. Tagliaferri S; Nagaraju G; Panagiotopoulos A; Och M; Cheng G; Iacoviello F; Mattevi C ACS Nano; 2021 Sep; 15(9):15342-15353. PubMed ID: 34491713 [TBL] [Abstract][Full Text] [Related]
15. Interface Engineering on Cellulose-Based Flexible Electrode Enables High Mass Loading Wearable Supercapacitor with Ultrahigh Capacitance and Energy Density. Chen R; Ling H; Huang Q; Yang Y; Wang X Small; 2022 Mar; 18(9):e2106356. PubMed ID: 34918469 [TBL] [Abstract][Full Text] [Related]
16. Additive Manufacturing of Two-Dimensional Conductive Metal-Organic Framework with Multidimensional Hybrid Architectures for High-Performance Energy Storage. Zhao J; Zhang Y; Lu H; Wang Y; Liu XD; Maleki Kheimeh Sari H; Peng J; Chen S; Li X; Zhang Y; Sun X; Xu B Nano Lett; 2022 Feb; 22(3):1198-1206. PubMed ID: 35080406 [TBL] [Abstract][Full Text] [Related]
17. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422 [TBL] [Abstract][Full Text] [Related]
18. Surface-Adaptive Capillarity Enabling Densified 3D Printing for Ultra-High Areal and Volumetric Energy Density Supercapacitors. Li X; Ling S; Cao W; Zeng L; Yuan R; Zhang C Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202202663. PubMed ID: 35347829 [TBL] [Abstract][Full Text] [Related]
19. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids. Su H; Xiong T; Tan Q; Yang F; Appadurai PBS; Afuwape AA; Balogun MJT; Huang Y; Guo K Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32531987 [TBL] [Abstract][Full Text] [Related]
20. Wood-Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors. Wang F; Liu X; Duan G; Yang H; Cheong JY; Lee J; Ahn J; Zhang Q; He S; Han J; Zhao Y; Kim ID; Jiang S Small; 2021 Sep; 17(35):e2102532. PubMed ID: 34302441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]