These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36626983)

  • 21. Cryo-EM studies of the rotary H
    Nakanishi A; Kishikawa JI; Mitsuoka K; Yokoyama K
    Biophys Physicobiol; 2019; 16():140-146. PubMed ID: 31660281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis.
    Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH
    J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner.
    Khan MM; Lee S; Couoh-Cardel S; Oot RA; Kim H; Wilkens S; Roh SH
    EMBO J; 2022 Feb; 41(3):e109360. PubMed ID: 34918374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for rotation of V1-ATPase.
    Imamura H; Nakano M; Noji H; Muneyuki E; Ohkuma S; Yoshida M; Yokoyama K
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2312-5. PubMed ID: 12598655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
    Minagawa Y; Ueno H; Hara M; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Yamato I; Muneyuki E; Noji H; Murata T; Iino R
    J Biol Chem; 2013 Nov; 288(45):32700-32707. PubMed ID: 24089518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. F
    Kubo S; Niina T; Takada S
    Biophys J; 2023 Jul; 122(14):2898-2909. PubMed ID: 36171725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.
    Rawson S; Phillips C; Huss M; Tiburcy F; Wieczorek H; Trinick J; Harrison MA; Muench SP
    Structure; 2015 Mar; 23(3):461-471. PubMed ID: 25661654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proton translocation driven by ATP hydrolysis in V-ATPases.
    Kawasaki-Nishi S; Nishi T; Forgac M
    FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and conformational plasticity of the intact
    Zhou L; Sazanov LA
    Science; 2019 Aug; 365(6455):. PubMed ID: 31439765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution.
    Benlekbir S; Bueler SA; Rubinstein JL
    Nat Struct Mol Biol; 2012 Dec; 19(12):1356-62. PubMed ID: 23142977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor.
    Lau WC; Rubinstein JL
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1367-72. PubMed ID: 20080582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atomic model for the membrane-embedded V
    Mazhab-Jafari MT; Rohou A; Schmidt C; Bueler SA; Benlekbir S; Robinson CV; Rubinstein JL
    Nature; 2016 Nov; 539(7627):118-122. PubMed ID: 27776355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein.
    Zhao J; Beyrakhova K; Liu Y; Alvarez CP; Bueler SA; Xu L; Xu C; Boniecki MT; Kanelis V; Luo ZQ; Cygler M; Rubinstein JL
    PLoS Pathog; 2017 Jun; 13(6):e1006394. PubMed ID: 28570695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function.
    Lu M; Vergara S; Zhang L; Holliday LS; Aris J; Gluck SL
    J Biol Chem; 2002 Oct; 277(41):38409-15. PubMed ID: 12163484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eukaryotic V-ATPase: novel structural findings and functional insights.
    Marshansky V; Rubinstein JL; Grüber G
    Biochim Biophys Acta; 2014 Jun; 1837(6):857-79. PubMed ID: 24508215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus.
    Nagamatsu Y; Takeda K; Kuranaga T; Numoto N; Miki K
    J Mol Biol; 2013 Aug; 425(15):2699-708. PubMed ID: 23639357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and Roles of V-type ATPases.
    Vasanthakumar T; Rubinstein JL
    Trends Biochem Sci; 2020 Apr; 45(4):295-307. PubMed ID: 32001091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structures of multisubunit membrane complexes with the CRYO ARM 200.
    Gerle C; Kishikawa JI; Yamaguchi T; Nakanishi A; Çoruh O; Makino F; Miyata T; Kawamoto A; Yokoyama K; Namba K; Kurisu G; Kato T
    Microscopy (Oxf); 2022 Oct; 71(5):249-261. PubMed ID: 35861182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of
    Iida T; Minagawa Y; Ueno H; Kawai F; Murata T; Iino R
    J Biol Chem; 2019 Nov; 294(45):17017-17030. PubMed ID: 31519751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and cryoelectron microscopy structure determination of human V-ATPase.
    Wang L; Chen Z; Wu H; Fu TM
    STAR Protoc; 2021 Mar; 2(1):100350. PubMed ID: 33665630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.