These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36627041)

  • 1. Cardiac microRNA expression profile in response to estivation.
    Naranjo M; Breedon SA; Storey KB
    Biochimie; 2023 Jul; 210():22-34. PubMed ID: 36627041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life in the slow lane: molecular mechanisms of estivation.
    Storey KB
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):733-54. PubMed ID: 12443930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression during estivation in spadefoot toads, Scaphiopus couchii: upregulation of riboflavin binding protein in liver.
    Storey KB; Dent ME; Storey JM
    J Exp Zool; 1999 Aug; 284(3):325-33. PubMed ID: 10404124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible phosphorylation control of skeletal muscle pyruvate kinase and phosphofructokinase during estivation in the spadefoot toad, Scaphiopus couchii.
    Cowan KJ; Storey KB
    Mol Cell Biochem; 1999 May; 195(1-2):173-81. PubMed ID: 10395081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant defenses and lipid peroxidation damage in estivating toads, Scaphiopus couchii.
    Grundy JE; Storey KB
    J Comp Physiol B; 1998 Mar; 168(2):132-42. PubMed ID: 9542148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine kinases and phosphatases in the estivating spadefoot toad.
    Cowan KJ; Storey KB
    Cell Physiol Biochem; 2001; 11(3):161-72. PubMed ID: 11410711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The muscle fatty acid binding protein of spadefoot toad (Scaphiopus couchii).
    Stewart JM; Claude JF; MacDonald JA; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Mar; 125(3):347-57. PubMed ID: 10818268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estivation-responsive microRNAs in a hypometabolic terrestrial snail.
    Hoyeck MP; Hadj-Moussa H; Storey KB
    PeerJ; 2019; 7():e6515. PubMed ID: 30809463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frogs and estivation: transcriptional insights into metabolism and cell survival in a natural model of extended muscle disuse.
    Reilly BD; Schlipalius DI; Cramp RL; Ebert PR; Franklin CE
    Physiol Genomics; 2013 May; 45(10):377-88. PubMed ID: 23548685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urea and KCl have differential effects on enzyme activities in liver and muscle of estivating versus nonestivating species.
    Cowan KJ; Storey KB
    Biochem Cell Biol; 2002; 80(6):745-55. PubMed ID: 12555807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dehydration on plasma osmolality, thirst-related behavior, and plasma and brain angiotensin concentrations in Couch's spadefoot toad, Scaphiopus couchii.
    Johnson WE; Propper CR
    J Exp Zool; 2000 May; 286(6):572-84. PubMed ID: 10766966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydration mediated microRNA response in the African clawed frog Xenopus laevis.
    Wu CW; Biggar KK; Storey KB
    Gene; 2013 Oct; 529(2):269-75. PubMed ID: 23958654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pro- and anti-apoptotic microRNAs are differentially regulated during estivation in Xenopus laevis.
    Biggar Y; Ingelson-Filpula WA; Storey KB
    Gene; 2022 Apr; 819():146236. PubMed ID: 35114277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation.
    Chen M; Storey KB
    Mar Genomics; 2014 Feb; 13():39-44. PubMed ID: 24444870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urea and salt effects on enzymes from estivating and non-estivating amphibians.
    Grundy JE; Storey KB
    Mol Cell Biochem; 1994 Feb; 131(1):9-17. PubMed ID: 8047069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the regulation of estivation in a freshwater snail through iTRAQ-based comparative proteomics.
    Sun J; Mu H; Zhang H; Chandramouli KH; Qian PY; Wong CK; Qiu JW
    J Proteome Res; 2013 Nov; 12(11):5271-80. PubMed ID: 24088062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological Responses to Fasting and Estivation for the Three-Toed Amphiuma (Amphiuma tridactylum).
    Smith ME; Secor SM
    Physiol Biochem Zool; 2017; 90(2):240-256. PubMed ID: 28277954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic responses of the South American ornate horned frog (Ceratophrys ornata) to estivation.
    Groom DJ; Kuchel L; Richards JG
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Jan; 164(1):2-9. PubMed ID: 22902863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation.
    Storey KB; Storey JM
    Q Rev Biol; 1990 Jun; 65(2):145-74. PubMed ID: 2201054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of global protein translation and protein degradation in aerobic dormancy.
    Ramnanan CJ; Allan ME; Groom AG; Storey KB
    Mol Cell Biochem; 2009 Mar; 323(1-2):9-20. PubMed ID: 19011953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.