These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36627295)
21. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610 [TBL] [Abstract][Full Text] [Related]
22. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Du XH; Li WP; Chang HT; Yang T; Duan GS; Wu BL; Huang JC; Chen FR; Liu CT; Chuang WS; Lu Y; Sui ML; Huang EW Nat Commun; 2020 May; 11(1):2390. PubMed ID: 32404913 [TBL] [Abstract][Full Text] [Related]
23. A novel nanostructure to achieve ultrahigh strength and good tensile ductility of a CoCrFeNiMn high entropy alloy. Xie Y; Xia T; Zhou D; Luo Y; Zeng W; Zhang Z; Wang J; Liang J; Zhang D Nanoscale; 2020 Mar; 12(9):5347-5352. PubMed ID: 32100778 [TBL] [Abstract][Full Text] [Related]
24. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Zhang Z; Sheng H; Wang Z; Gludovatz B; Zhang Z; George EP; Yu Q; Mao SX; Ritchie RO Nat Commun; 2017 Feb; 8():14390. PubMed ID: 28218267 [TBL] [Abstract][Full Text] [Related]
25. Facile route to bulk ultrafine-grain steels for high strength and ductility. Gao J; Jiang S; Zhang H; Huang Y; Guan D; Xu Y; Guan S; Bendersky LA; Davydov AV; Wu Y; Zhu H; Wang Y; Lu Z; Rainforth WM Nature; 2021 Feb; 590(7845):262-267. PubMed ID: 33568822 [TBL] [Abstract][Full Text] [Related]
26. An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys. Duan F; Li Q; Jiang Z; Zhou L; Luan J; Shen Z; Zhou W; Zhang S; Pan J; Zhou X; Yang T; Lu J Nat Commun; 2024 Aug; 15(1):6832. PubMed ID: 39122677 [TBL] [Abstract][Full Text] [Related]
27. Effects of V Addition on the Deformation Mechanism and Mechanical Properties of Non-Equiatomic CoCrNi Medium-Entropy Alloys. Shen R; Ni Z; Peng S; Yan H; Tian Y Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512441 [TBL] [Abstract][Full Text] [Related]
28. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying. Wang T; Shukla S; Gwalani B; Sinha S; Thapliyal S; Frank M; Mishra RS Sci Rep; 2021 Jan; 11(1):1579. PubMed ID: 33452417 [TBL] [Abstract][Full Text] [Related]
29. Tuning Microstructure and Mechanical Performance of a Co-Rich Transformation-Induced Plasticity High Entropy Alloy. Yi H; Xie R; Zhang Y; Wang L; Tan M; Li T; Wei D Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806733 [TBL] [Abstract][Full Text] [Related]
30. Harnessing instability for work hardening in multi-principal element alloys. Xu B; Duan H; Chen X; Wang J; Ma Y; Jiang P; Yuan F; Wang Y; Ren Y; Du K; Wei Y; Wu X Nat Mater; 2024 Jun; 23(6):755-761. PubMed ID: 38605195 [TBL] [Abstract][Full Text] [Related]
31. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Yang M; Yan D; Yuan F; Jiang P; Ma E; Wu X Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7224-7229. PubMed ID: 29946032 [TBL] [Abstract][Full Text] [Related]
32. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Zhang Z; Liu CT; Miller MK; Wang XL; Wen Y; Fujita T; Hirata A; Chen M; Chen G; Chin BA Sci Rep; 2013; 3():1327. PubMed ID: 23429646 [TBL] [Abstract][Full Text] [Related]
33. Effect of serrated grain boundary on tensile and creep properties of a precipitation strengthened high entropy alloy. Lee JL; Wang PT; Lo KC; Shen PK; Tsou NT; Kakehi K; Murakami H; Tsai CW; Gorsse S; Yeh AC Sci Technol Adv Mater; 2023; 24(1):2158043. PubMed ID: 36684848 [TBL] [Abstract][Full Text] [Related]
34. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube. Kiani MT; Wang Y; Bertin N; Cai W; Gu XW Nano Lett; 2019 Jan; 19(1):255-260. PubMed ID: 30525680 [TBL] [Abstract][Full Text] [Related]
35. Kink bands promote exceptional fracture resistance in a NbTaTiHf refractory medium-entropy alloy. Cook DH; Kumar P; Payne MI; Belcher CH; Borges P; Wang W; Walsh F; Li Z; Devaraj A; Zhang M; Asta M; Minor AM; Lavernia EJ; Apelian D; Ritchie RO Science; 2024 Apr; 384(6692):178-184. PubMed ID: 38603511 [TBL] [Abstract][Full Text] [Related]
36. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting. Kaiser R; Williamson K; O'Brien C; Ramirez-Garcia S; Browne DJ J Mech Behav Biomed Mater; 2013 Aug; 24():53-63. PubMed ID: 23683759 [TBL] [Abstract][Full Text] [Related]
37. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel. Schober M; Schnitzer R; Leitner H Ultramicroscopy; 2009 Apr; 109(5):553-62. PubMed ID: 19100688 [TBL] [Abstract][Full Text] [Related]
38. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Kim SH; Kim H; Kim NJ Nature; 2015 Feb; 518(7537):77-9. PubMed ID: 25652998 [TBL] [Abstract][Full Text] [Related]
39. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys. Jiao M; Lei Z; Wu Y; Du J; Zhou XY; Li W; Yuan X; Liu X; Zhu X; Wang S; Zhu H; Cao P; Liu X; Zhang X; Wang H; Jiang S; Lu Z Nat Commun; 2023 Feb; 14(1):806. PubMed ID: 36781880 [TBL] [Abstract][Full Text] [Related]
40. Preparing Thick Gradient Surface Layer in Cu-Zn Alloy via Ultrasonic Severe Surface Rolling for Strength-Ductility Balance. Sun Q; Sun J; Fu Y; Xu B; Han Y; Chen J; Han J; Wu H; Wu G Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]