These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tumor-derived extracellular vesicles induce invalid cytokine release and exhaustion of CD19 CAR-T Cells. Zhu X; Hu H; Xiao Y; Li Q; Zhong Z; Yang J; Zou P; Cao Y; Meng F; Li W; You Y; Guo AY; Zhu X Cancer Lett; 2022 Jun; 536():215668. PubMed ID: 35367518 [TBL] [Abstract][Full Text] [Related]
3. Extracellular Vesicles Expressing CD19 Antigen Improve Expansion and Efficacy of CD19-Targeted CAR-T Cells. Zhang Y; Ge T; Huang M; Qin Y; Liu T; Mu W; Wang G; Jiang L; Li T; Zhao L; Wang J Int J Nanomedicine; 2023; 18():49-63. PubMed ID: 36636644 [TBL] [Abstract][Full Text] [Related]
4. CD19 Chimeric Antigen Receptor T Cells From Patients With Chronic Lymphocytic Leukemia Display an Elevated IFN-γ Production Profile. Magalhaes I; Kalland I; Kochenderfer JN; Österborg A; Uhlin M; Mattsson J J Immunother; 2018; 41(2):73-83. PubMed ID: 29315094 [TBL] [Abstract][Full Text] [Related]
5. Suematsu M; Yagyu S; Nagao N; Kubota S; Shimizu Y; Tanaka M; Nakazawa Y; Imamura T Front Immunol; 2022; 13():770132. PubMed ID: 35154098 [TBL] [Abstract][Full Text] [Related]
6. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas. Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905 [TBL] [Abstract][Full Text] [Related]
7. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. Schneider D; Xiong Y; Wu D; Nӧlle V; Schmitz S; Haso W; Kaiser A; Dropulic B; Orentas RJ J Immunother Cancer; 2017; 5():42. PubMed ID: 28515942 [TBL] [Abstract][Full Text] [Related]
8. Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Saito S; Nakazawa Y; Sueki A; Matsuda K; Tanaka M; Yanagisawa R; Maeda Y; Sato Y; Okabe S; Inukai T; Sugita K; Wilson MH; Rooney CM; Koike K Cytotherapy; 2014 Sep; 16(9):1257-69. PubMed ID: 25108652 [TBL] [Abstract][Full Text] [Related]
9. Construction of a new anti-CD19 chimeric antigen receptor and the anti-leukemia function study of the transduced T cells. An N; Tao Z; Li S; Xing H; Tang K; Tian Z; Rao Q; Wang M; Wang J Oncotarget; 2016 Mar; 7(9):10638-49. PubMed ID: 26840021 [TBL] [Abstract][Full Text] [Related]
10. Synergistic effect of ibrutinib and CD19 CAR-T cells on Raji cells in vivo and in vitro. Liu M; Wang X; Li Z; Zhang R; Mu J; Jiang Y; Deng Q; Sun L Cancer Sci; 2020 Nov; 111(11):4051-4060. PubMed ID: 32876369 [TBL] [Abstract][Full Text] [Related]
11. Humanization of the antigen-recognition domain does not impinge on the antigen-binding, cytokine secretion, and antitumor reactivity of humanized nanobody-based CD19-redirected CAR-T cells. Safarzadeh Kozani P; Safarzadeh Kozani P; Rahbarizadeh F J Transl Med; 2024 Jul; 22(1):679. PubMed ID: 39054481 [TBL] [Abstract][Full Text] [Related]
12. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Torikai H; Reik A; Liu PQ; Zhou Y; Zhang L; Maiti S; Huls H; Miller JC; Kebriaei P; Rabinovich B; Lee DA; Champlin RE; Bonini C; Naldini L; Rebar EJ; Gregory PD; Holmes MC; Cooper LJ Blood; 2012 Jun; 119(24):5697-705. PubMed ID: 22535661 [TBL] [Abstract][Full Text] [Related]
13. Antitumor Potency of an Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy, Lisocabtagene Maraleucel in Combination With Ibrutinib or Acalabrutinib. Qin JS; Johnstone TG; Baturevych A; Hause RJ; Ragan SP; Clouser CR; Jones JC; Ponce R; Krejsa CM; Salmon RA; Ports MO J Immunother; 2020 May; 43(4):107-120. PubMed ID: 31899702 [TBL] [Abstract][Full Text] [Related]
14. [In vitro studies on the transfer of CAR into leukemia cells due to their residue in the autologous CAR-T cell preparation system for acute B-cell acute lymphoblastic leukemia]. Liu MJ; Mu J; Yuan T; Cui R; Meng JX; Jiang YY; Li YM; Deng Q Zhonghua Xue Ye Xue Za Zhi; 2021 Feb; 42(2):140-145. PubMed ID: 33858045 [No Abstract] [Full Text] [Related]
15. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Fousek K; Watanabe J; Joseph SK; George A; An X; Byrd TT; Morris JS; Luong A; Martínez-Paniagua MA; Sanber K; Navai SA; Gad AZ; Salsman VS; Mathew PR; Kim HN; Wagner DL; Brunetti L; Jang A; Baker ML; Varadarajan N; Hegde M; Kim YM; Heisterkamp N; Abdel-Azim H; Ahmed N Leukemia; 2021 Jan; 35(1):75-89. PubMed ID: 32205861 [TBL] [Abstract][Full Text] [Related]
16. Tumor-intrinsic CD21 expression impacts the response of B-cell malignancy cells to CD19-CAR-T cells. Li D; Xu Q; Hu Y; Wang W; Xie S; Zhao C; Liu H J Leukoc Biol; 2022 Oct; 112(4):913-918. PubMed ID: 35338522 [TBL] [Abstract][Full Text] [Related]
17. Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in chronic lymphocytic leukemia. Cox MJ; Lucien F; Sakemura R; Boysen JC; Kim Y; Horvei P; Manriquez Roman C; Hansen MJ; Tapper EE; Siegler EL; Forsman C; Crotts SB; Schick KJ; Hefazi M; Ruff MW; Can I; Adada M; Bezerra E; Kankeu Fonkoua LA; Nevala WK; Braggio E; Ding W; Parikh SA; Kay NE; Kenderian SS Mol Ther; 2021 Apr; 29(4):1529-1540. PubMed ID: 33388419 [TBL] [Abstract][Full Text] [Related]
18. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Singh H; Figliola MJ; Dawson MJ; Huls H; Olivares S; Switzer K; Mi T; Maiti S; Kebriaei P; Lee DA; Champlin RE; Cooper LJ Cancer Res; 2011 May; 71(10):3516-27. PubMed ID: 21558388 [TBL] [Abstract][Full Text] [Related]
19. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Fraietta JA; Lacey SF; Orlando EJ; Pruteanu-Malinici I; Gohil M; Lundh S; Boesteanu AC; Wang Y; O'Connor RS; Hwang WT; Pequignot E; Ambrose DE; Zhang C; Wilcox N; Bedoya F; Dorfmeier C; Chen F; Tian L; Parakandi H; Gupta M; Young RM; Johnson FB; Kulikovskaya I; Liu L; Xu J; Kassim SH; Davis MM; Levine BL; Frey NV; Siegel DL; Huang AC; Wherry EJ; Bitter H; Brogdon JL; Porter DL; June CH; Melenhorst JJ Nat Med; 2018 May; 24(5):563-571. PubMed ID: 29713085 [TBL] [Abstract][Full Text] [Related]
20. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Müller S; Bexte T; Gebel V; Kalensee F; Stolzenberg E; Hartmann J; Koehl U; Schambach A; Wels WS; Modlich U; Ullrich E Front Immunol; 2019; 10():3123. PubMed ID: 32117200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]