These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36627504)

  • 1. Adaptations for extremely high muscular power output: why do muscles that operate at intermediate cycle frequencies generate the highest powers?
    Askew GN
    J Muscle Res Cell Motil; 2023 Jun; 44(2):107-114. PubMed ID: 36627504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis): the in vivo length cycle and its implications for muscle performance.
    Askew GN; Marsh RL
    J Exp Biol; 2001 Nov; 204(Pt 21):3587-600. PubMed ID: 11719526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle designed for maximum short-term power output: quail flight muscle.
    Askew GN; Marsh RL
    J Exp Biol; 2002 Aug; 205(Pt 15):2153-60. PubMed ID: 12110648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during take-off.
    Askew GN; Marsh RL; Ellington CP
    J Exp Biol; 2001 Nov; 204(Pt 21):3601-19. PubMed ID: 11719527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation.
    Askew GN; Marsh RL
    J Exp Biol; 1998 May; 201(Pt 10):1527-40. PubMed ID: 9556536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power output by an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2000 Sep; 203(Pt 17):2667-89. PubMed ID: 10934007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power output of sound-producing muscles in the tree frogs Hyla versicolor and Hyla chrysoscelis.
    Girgenrath M; Marsh RL
    J Exp Biol; 1999 Nov; 202(Pt 22):3225-37. PubMed ID: 10539971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of asymmetric length trajectories on the initial mechanical efficiency of mouse soleus muscles.
    Holt NC; Askew GN
    J Exp Biol; 2012 Jan; 215(Pt 2):324-30. PubMed ID: 22189776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal shortening velocities for in situ power production of rat soleus and plantaris muscles.
    Swoap SJ; Caiozzo VJ; Baldwin KM
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C1057-63. PubMed ID: 9316427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pectoralis muscle performance during ascending and slow level flight in mallards (Anas platyrhynchos).
    Williamson MR; Dial KP; Biewener AA
    J Exp Biol; 2001 Feb; 204(Pt 3):495-507. PubMed ID: 11171301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power output of scallop adductor muscle during contractions replicating the in vivo mechanical cycle.
    Marsh RL; Olson JM
    J Exp Biol; 1994 Aug; 193():139-56. PubMed ID: 7964397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical properties of the mantle muscle of European cuttlefish (Sepia officinalis).
    Gladman NW; Askew GN
    J Exp Biol; 2022 Dec; 225(23):. PubMed ID: 36416079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight muscle power increases with strain amplitude and decreases with cycle frequency in zebra finches (
    Bahlman JW; Baliga VB; Altshuler DL
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 33046567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces and powers of slow and fast skeletal muscles in mice during repeated contractions.
    Brooks SV; Faulkner JA
    J Physiol; 1991 May; 436():701-10. PubMed ID: 2061852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of fast- and slow-twitch muscles of the mouse performing cyclic contractions.
    Barclay CJ
    J Exp Biol; 1994 Aug; 193():65-78. PubMed ID: 7964400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of length trajectory on the mechanical power output of mouse skeletal muscles.
    Askew GN; Marsh RL
    J Exp Biol; 1997 Dec; 200(Pt 24):3119-31. PubMed ID: 9364020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers.
    Reiser PJ; Welch KC; Suarez RK; Altshuler DL
    J Exp Biol; 2013 Jun; 216(Pt 12):2247-56. PubMed ID: 23580719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of temperature on power output of scup red muscle during cyclical length changes.
    Rome LC; Swank D
    J Exp Biol; 1992 Oct; 171():261-81. PubMed ID: 1431729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How muscles deal with real-world loads: the influence of length trajectory on muscle performance.
    Marsh RL
    J Exp Biol; 1999 Dec; 202(Pt 23):3377-85. PubMed ID: 10562520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.