BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36627517)

  • 1. Study on the blood flow characteristics of venous needle retention with different super-hydrophobic surface structures.
    Yu Z; Liu L; Deng Y; Zhang X; Yu C
    Med Biol Eng Comput; 2023 Mar; 61(3):867-874. PubMed ID: 36627517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flow field near a venous needle in hemodialysis: a computational study.
    Fulker D; Kang M; Simmons A; Barber T
    Hemodial Int; 2013 Oct; 17(4):602-11. PubMed ID: 23448433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics characterization of blood flow in central aorta to pulmonary artery connections: importance of shunt angulation as a determinant of shear stress-induced thrombosis.
    Celestin C; Guillot M; Ross-Ascuitto N; Ascuitto R
    Pediatr Cardiol; 2015 Mar; 36(3):600-15. PubMed ID: 25404555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Model of the Arterial and Venous Needle During Hemodialysis.
    Fulker D; Simmons A; Barber T
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27537240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis and computational fluid dynamics simulation of hemodynamic influences caused by splenic vein thrombosis].
    Zhou H; Gong P; Du X; Wang M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Feb; 32(1):43-7. PubMed ID: 25997264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turbulent flow evaluation of the venous needle during hemodialysis.
    Unnikrishnan S; Huynh TN; Brott BC; Ito Y; Cheng CH; Shih AM; Allon M; Anayiotos AS
    J Biomech Eng; 2005 Dec; 127(7):1141-6. PubMed ID: 16502656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico analyses of blood flow and oxygen transport in human micro-veins and valves.
    Rajeeva Pandian NK; Jain A
    Clin Hemorheol Microcirc; 2022; 81(1):81-96. PubMed ID: 35034895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Hemodialysis Catheter Insertion on Hemodynamics in the Central Veins.
    Park MH; Qiu Y; Cao H; Yuan D; Li D; Jiang Y; Peng L; Zheng T
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32110795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonographic evaluation of platelet aggregate retention in a vortex within a simulated venous sinus.
    Machi J; Sigel B; Ramos JR
    J Ultrasound Med; 1986 Dec; 5(12):685-9. PubMed ID: 3543387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel modular anastomotic valve device for hemodialysis vascular access: preliminary computational hemodynamic assessment.
    McNally A; Akingba AG; Robinson EA; Sucosky P
    J Vasc Access; 2014; 15(6):448-60. PubMed ID: 25198822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI.
    Yang K; Wu S; Ghista DN; Yang D; Wong KKL
    Comput Methods Programs Biomed; 2022 Apr; 216():106678. PubMed ID: 35144147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Assessment of Hemodynamics Vortices Within the Cerebral Vasculature Using Informational Entropy.
    Sunderland K; Zhao F; Jiang J
    Methods Mol Biol; 2022; 2375():247-260. PubMed ID: 34591313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of walking in deep venous thrombosis: a new integrated solid and fluid mechanics model.
    López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F; Garcia-Bennett J
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27505011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Fluid Dynamic Analysis of the Hemodialysis Plastic Cannula.
    Fulker D; Sayed Z; Simmons A; Barber T
    Artif Organs; 2017 Nov; 41(11):1035-1042. PubMed ID: 28591486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of intermittent pneumatic compression devices on deep venous flow velocity in patients with congestive heart failure.
    Nose Y; Murata K; Wada Y; Tanaka T; Fukagawa Y; Yoshino H; Susa T; Kihara C; Matsuzaki M
    J Cardiol; 2010 May; 55(3):384-90. PubMed ID: 20350509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics simulations as a complementary study for transcatheter endovascular stent implantation for re-coarctation of the aorta associated with minimal pressure drop: an aneurysmal ductal ampulla with aortic isthmus narrowing.
    Guillot M; Ascuitto R; Ross-Ascuitto N; Mallula K; Siwik E
    Cardiol Young; 2019 Jun; 29(6):768-776. PubMed ID: 31198121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lagrangian-averaged vorticity deviation of spiraling blood flow in the heart during isovolumic contraction and ejection phases.
    Yang K; Wu S; Zhang H; Ghista DN; Samuel OW; Wong KKL
    Med Biol Eng Comput; 2021 Aug; 59(7-8):1417-1430. PubMed ID: 34115272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution hemodynamic profiling of murine arteriovenous fistula using magnetic resonance imaging and computational fluid dynamics.
    Pike D; Shiu YT; Somarathna M; Guo L; Isayeva T; Totenhagen J; Lee T
    Theor Biol Med Model; 2017 Mar; 14(1):5. PubMed ID: 28320412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow dynamics of the St Jude Medical Symmetry aortic connector vein graft anastomosis do not contribute to the risk of acute thrombosis.
    Redaelli A; Maisano F; Ligorio G; Cattaneo E; Montevecchi FM; Alfieri O
    J Thorac Cardiovasc Surg; 2004 Jul; 128(1):117-23. PubMed ID: 15224030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation of flow rate and angle of injected venous needle on influencing intimal hyperplasia at the venous anastomosis of the hemodialysis graft.
    Yang L; Yin A; Liu W
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):239-248. PubMed ID: 28168585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.