These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36627750)

  • 1. One-carbon metabolic enzymes are regulated during cell division and make distinct contributions to the metabolome and cell cycle progression in Saccharomyces cerevisiae.
    Hammer SE; Polymenis M
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36627750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity.
    Maitra N; He C; Blank HM; Tsuchiya M; Schilling B; Kaeberlein M; Aramayo R; Kennedy BK; Polymenis M
    Elife; 2020 May; 9():. PubMed ID: 32432546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae.
    Kastanos EK; Woldman YY; Appling DR
    Biochemistry; 1997 Dec; 36(48):14956-64. PubMed ID: 9398220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple metabolic requirements for size homeostasis and initiation of division in
    Soma S; Yang K; Morales MI; Polymenis M
    Microb Cell; 2014 Aug; 1(8):256-266. PubMed ID: 28357252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae.
    Aon MA; Mónaco ME; Cortassa S
    Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae.
    Gelling CL; Piper MD; Hong SP; Kornfeld GD; Dawes IW
    J Biol Chem; 2004 Feb; 279(8):7072-81. PubMed ID: 14645232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building blocks are synthesized on demand during the yeast cell cycle.
    Campbell K; Westholm J; Kasvandik S; Di Bartolomeo F; Mormino M; Nielsen J
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7575-7583. PubMed ID: 32213592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae.
    Matsushika A; Nagashima A; Goshima T; Hoshino T
    PLoS One; 2013; 8(7):e69005. PubMed ID: 23874849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. II. Relief of cell-cycle constraints allows accelerated cell divisions.
    Singer RA; Johnston GC
    Exp Cell Res; 1983 Nov; 149(1):15-26. PubMed ID: 6357813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression.
    Mónaco ME; Valdecantos PA; Aon MA
    Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism.
    Enriquez-Hesles E; Smith DL; Maqani N; Wierman MB; Sutcliffe MD; Fine RD; Kalita A; Santos SM; Muehlbauer MJ; Bain JR; Janes KA; Hartman JL; Hirschey MD; Smith JS
    J Biol Chem; 2021; 296():100125. PubMed ID: 33243834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine Is an Essential Metabolite for Effector T Cell Expansion.
    Ma EH; Bantug G; Griss T; Condotta S; Johnson RM; Samborska B; Mainolfi N; Suri V; Guak H; Balmer ML; Verway MJ; Raissi TC; Tsui H; Boukhaled G; Henriques da Costa S; Frezza C; Krawczyk CM; Friedman A; Manfredi M; Richer MJ; Hess C; Jones RG
    Cell Metab; 2017 Feb; 25(2):345-357. PubMed ID: 28111214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells.
    Dudani AK; Prasad R
    Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When yeast cells change their mind: cell cycle "Start" is reversible under starvation.
    Irvali D; Schlottmann FP; Muralidhara P; Nadelson I; Kleemann K; Wood NE; Doncic A; Ewald JC
    EMBO J; 2023 Jan; 42(2):e110321. PubMed ID: 36420556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and the DNA-division sequence in the yeast Saccharomyces cerevisiae.
    Singer RA; Johnston GC
    Exp Cell Res; 1985 Apr; 157(2):387-96. PubMed ID: 3884347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic changes in rate of amino acid uptake during yeast cell cycle.
    Carter BL; Halvorson HO
    J Cell Biol; 1973 Aug; 58(2):401-9. PubMed ID: 4580902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling gene expression for cell size control and senescence in Saccharomyces cerevisiae.
    Chen Y; Futcher B
    Curr Genet; 2021 Feb; 67(1):41-47. PubMed ID: 33151380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
    Ewald JC; Kuehne A; Zamboni N; Skotheim JM
    Mol Cell; 2016 May; 62(4):532-45. PubMed ID: 27203178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase isozymes from Saccharomyces cerevisiae.
    Tibbetts AS; Appling DR
    J Biol Chem; 2000 Jul; 275(27):20920-7. PubMed ID: 10877846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell size is regulated by phospholipids and not by storage lipids in Saccharomyces cerevisiae.
    Rao MJ; Srinivasan M; Rajasekharan R
    Curr Genet; 2018 Oct; 64(5):1071-1087. PubMed ID: 29536156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.