These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 36627776)

  • 21. [Catalysis of enzymes under industrial environment and their adaptive modifications: a review].
    Wang W; Wen P; Xu K; Zheng R; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1857-1869. PubMed ID: 31668034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges.
    Wu H; Chen Q; Zhang W; Mu W
    Crit Rev Food Sci Nutr; 2023; 63(14):2057-2073. PubMed ID: 34445912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Industrial applications of enzyme biocatalysis: Current status and future aspects.
    Choi JM; Han SS; Kim HS
    Biotechnol Adv; 2015 Nov; 33(7):1443-54. PubMed ID: 25747291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipases for targeted industrial applications, focusing on the development of biotechnologically significant aspects: A comprehensive review of recent trends in protein engineering.
    Vardar-Yel N; Tütüncü HE; Sürmeli Y
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):132853. PubMed ID: 38838897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends.
    Bilal M; Iqbal HMN
    Crit Rev Food Sci Nutr; 2020; 60(12):2052-2066. PubMed ID: 31210055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current status and emerging frontiers in enzyme engineering: An industrial perspective.
    Ndochinwa OG; Wang QY; Amadi OC; Nwagu TN; Nnamchi CI; Okeke ES; Moneke AN
    Heliyon; 2024 Jun; 10(11):e32673. PubMed ID: 38912509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering the third wave of biocatalysis.
    Bornscheuer UT; Huisman GW; Kazlauskas RJ; Lutz S; Moore JC; Robins K
    Nature; 2012 May; 485(7397):185-94. PubMed ID: 22575958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directed Evolution of Enzymes for Industrial Biocatalysis.
    Porter JL; Rusli RA; Ollis DL
    Chembiochem; 2016 Feb; 17(3):197-203. PubMed ID: 26661585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis.
    Bilal M; Cui J; Iqbal HMN
    Int J Biol Macromol; 2019 Jun; 130():186-196. PubMed ID: 30817963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A roadmap to directed enzyme evolution and screening systems for biotechnological applications.
    Martínez R; Schwaneberg U
    Biol Res; 2013; 46(4):395-405. PubMed ID: 24510142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational design of enzymes for biotechnological applications.
    Planas-Iglesias J; Marques SM; Pinto GP; Musil M; Stourac J; Damborsky J; Bednar D
    Biotechnol Adv; 2021; 47():107696. PubMed ID: 33513434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome mining integrating semi-rational protein engineering and nanoreactor design: roadmap for a robust biocatalyst for industrial resolution of Vince lactam.
    Li H; Gao S; Qiu Y; Liang C; Zhu S; Zheng G
    Appl Microbiol Biotechnol; 2020 Feb; 104(3):1109-1123. PubMed ID: 31828408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein engineering approaches to chemical biotechnology.
    Chen Z; Zeng AP
    Curr Opin Biotechnol; 2016 Dec; 42():198-205. PubMed ID: 27525565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design.
    Rajakumara E; Abhishek S; Nitin K; Saniya D; Bajaj P; Schwaneberg U; Davari MD
    ACS Chem Biol; 2022 Feb; 17(2):266-280. PubMed ID: 35041385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering aldolases as biocatalysts.
    Windle CL; Müller M; Nelson A; Berry A
    Curr Opin Chem Biol; 2014 Apr; 19(100):25-33. PubMed ID: 24780276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular biology interventions for activity improvement and production of industrial enzymes.
    Kant Bhatia S; Vivek N; Kumar V; Chandel N; Thakur M; Kumar D; Yang YH; Pugazendhi A; Kumar G
    Bioresour Technol; 2021 Mar; 324():124596. PubMed ID: 33440311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directed evolution: selecting today's biocatalysts.
    Otten LG; Quax WJ
    Biomol Eng; 2005 Jun; 22(1-3):1-9. PubMed ID: 15857778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for designing biocatalysts with new functions.
    Bell EL; Hutton AE; Burke AJ; O'Connell A; Barry A; O'Reilly E; Green AP
    Chem Soc Rev; 2024 Mar; 53(6):2851-2862. PubMed ID: 38353665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts.
    Kadisch M; Willrodt C; Hillen M; Bühler B; Schmid A
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28719144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.