BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36627927)

  • 1. Molecule generation toward target protein (SARS-CoV-2) using reinforcement learning-based graph neural network via knowledge graph.
    Ranjan A; Kumar H; Kumari D; Anand A; Misra R
    Netw Model Anal Health Inform Bioinform; 2023; 12(1):13. PubMed ID: 36627927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating novel molecule for target protein (SARS-CoV-2) using drug-target interaction based on graph neural network.
    Ranjan A; Shukla S; Datta D; Misra R
    Netw Model Anal Health Inform Bioinform; 2022; 11(1):6. PubMed ID: 34956815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph Convolutional Capsule Regression (GCCR): A Model for Accelerated Filtering of Novel Potential Candidates for SARS-CoV-2 based on Binding Affinity.
    Krishnan A; Vinod D
    Curr Comput Aided Drug Des; 2024; 20(1):33-41. PubMed ID: 37005531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment.
    Fang Y; Pan X; Shen HB
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36961341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReGen-DTI: A novel generative drug target interaction model for predicting potential drug candidates against SARS-COV2.
    Sivangi KB; Amilpur S; Dasari CM
    Comput Biol Chem; 2023 Oct; 106():107927. PubMed ID: 37499436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning.
    Xu X; Zhou J; Zhu C; Zhan Q; Li Z; Zhang R; Wang Y; Liao X; Gao X
    F1000Res; 2023; 12():757. PubMed ID: 38434657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling repurposable drug combinations against COVID-19 by developing the heterogeneous deep herb-graph method.
    Yang F; Zhang S; Pan W; Yao R; Zhang W; Zhang Y; Wang G; Zhang Q; Cheng Y; Dong J; Ruan C; Cui L; Wu H; Xue F
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Atance SR; Diez JV; Engkvist O; Olsson S; Mercado R
    J Chem Inf Model; 2022 Oct; 62(20):4863-4872. PubMed ID: 36219571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GEFA: Early Fusion Approach in Drug-Target Affinity Prediction.
    Nguyen TM; Nguyen T; Le TM; Tran T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):718-728. PubMed ID: 34197324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach.
    Khemchandani Y; O'Hagan S; Samanta S; Swainston N; Roberts TJ; Bollegala D; Kell DB
    J Cheminform; 2020 Sep; 12(1):53. PubMed ID: 33431037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning.
    Zhang H; Huang J; Xie J; Huang W; Yang Y; Xu M; Lei J; Chen H
    J Chem Inf Model; 2024 Feb; 64(3):666-676. PubMed ID: 38241022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of drug-likeness using graph convolutional attention network.
    Sun J; Wen M; Wang H; Ruan Y; Yang Q; Kang X; Zhang H; Zhang Z; Lu H
    Bioinformatics; 2022 Nov; 38(23):5262-5269. PubMed ID: 36222555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based
    Li Y; Pei J; Lai L
    Chem Sci; 2021 Oct; 12(41):13664-13675. PubMed ID: 34760151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gargoyles: An Open Source Graph-Based Molecular Optimization Method Based on Deep Reinforcement Learning.
    Erikawa D; Yasuo N; Suzuki T; Nakamura S; Sekijima M
    ACS Omega; 2023 Oct; 8(40):37431-37441. PubMed ID: 37841174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformer-RL: A deep reinforcement learning library for conformer generation.
    Jiang R; Gogineni T; Kammeraad J; He Y; Tewari A; Zimmerman PM
    J Comput Chem; 2022 Oct; 43(27):1880-1886. PubMed ID: 36000759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning enabled identification of potential SARS-CoV-2 3CLpro inhibitors based on fixed molecular fingerprints and Graph-CNN neural representations.
    Haneczok J; Delijewski M
    J Biomed Inform; 2021 Jul; 119():103821. PubMed ID: 34052441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning.
    Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):24. PubMed ID: 36803659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.