These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36628656)

  • 1. Opportunity and challenges of phenotyping plant salt tolerance.
    Hu Y; Schmidhalter U
    Trends Plant Sci; 2023 May; 28(5):552-566. PubMed ID: 36628656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marker-assisted selection in plant breeding for salinity tolerance.
    Ashraf M; Akram NA; Mehboob-Ur-Rahman ; Foolad MR
    Methods Mol Biol; 2012; 913():305-33. PubMed ID: 22895769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress.
    Johansen K; Morton MJL; Malbeteau YM; Aragon B; Al-Mashharawi SK; Ziliani MG; Angel Y; Fiene GM; Negrão SSC; Mousa MAA; Tester MA; McCabe MF
    Front Plant Sci; 2019; 10():370. PubMed ID: 30984222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in
    Awlia M; Nigro A; Fajkus J; Schmoeckel SM; Negrão S; Santelia D; Trtílek M; Tester M; Julkowska MM; Panzarová K
    Front Plant Sci; 2016; 7():1414. PubMed ID: 27733855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of salinity stress on cotton and opportunities for improvement through conventional and biotechnological approaches.
    Chaudhary MT; Majeed S; Rana IA; Ali Z; Jia Y; Du X; Hinze L; Azhar MT
    BMC Plant Biol; 2024 Jan; 24(1):20. PubMed ID: 38166652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trait dissection of salinity tolerance with plant phenomics.
    Berger B; de Regt B; Tester M
    Methods Mol Biol; 2012; 913():399-413. PubMed ID: 22895775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes.
    Jha UC; Bohra A; Jha R; Parida SK
    Plant Cell Rep; 2019 Mar; 38(3):255-277. PubMed ID: 30637478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Envirotyping for deciphering environmental impacts on crop plants.
    Xu Y
    Theor Appl Genet; 2016 Apr; 129(4):653-673. PubMed ID: 26932121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant phenomics: High-throughput technology for accelerating genomics.
    Pasala R; Pandey BB
    J Biosci; 2020; 45():. PubMed ID: 32975238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives.
    Tao H; Xu S; Tian Y; Li Z; Ge Y; Zhang J; Wang Y; Zhou G; Deng X; Zhang Z; Ding Y; Jiang D; Guo Q; Jin S
    Plant Commun; 2022 Nov; 3(6):100344. PubMed ID: 35655429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems.
    Rawat N; Wungrampha S; Singla-Pareek SL; Yu M; Shabala S; Pareek A
    Mol Plant; 2022 Jan; 15(1):45-64. PubMed ID: 34915209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput plant phenotyping: a role for metabolomics?
    Hall RD; D'Auria JC; Silva Ferreira AC; Gibon Y; Kruszka D; Mishra P; van de Zedde R
    Trends Plant Sci; 2022 Jun; 27(6):549-563. PubMed ID: 35248492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Loci Associated with Salt Tolerance in Advanced Breeding Populations of Tetraploid Alfalfa Using Genome-Wide Association Studies.
    Liu XP; Hawkins C; Peel MD; Yu LX
    Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance.
    Joshi S; Thoday-Kennedy E; Daetwyler HD; Hayden M; Spangenberg G; Kant S
    PLoS One; 2021; 16(7):e0254908. PubMed ID: 34297757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.