These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36629262)

  • 1. HybridRNAbind: prediction of RNA interacting residues across structure-annotated and disorder-annotated proteins.
    Zhang F; Li M; Zhang J; Kurgan L
    Nucleic Acids Res; 2023 Mar; 51(5):e25. PubMed ID: 36629262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins.
    Zhang J; Ghadermarzi S; Kurgan L
    Bioinformatics; 2020 Sep; 36(18):4729-4738. PubMed ID: 32860044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HybridDBRpred: improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins.
    Zhang J; Basu S; Kurgan L
    Nucleic Acids Res; 2024 Jan; 52(2):e10. PubMed ID: 38048333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepPRObind: Modular Deep Learner that Accurately Predicts Structure and Disorder-Annotated Protein Binding Residues.
    Zhang F; Li M; Zhang J; Shi W; Kurgan L
    J Mol Biol; 2023 Jul; 435(14):167945. PubMed ID: 36621533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-binding residues in sequence space: conservation and interaction patterns.
    Spriggs RV; Jones S
    Comput Biol Chem; 2009 Oct; 33(5):397-403. PubMed ID: 19700370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues.
    Yan J; Friedrich S; Kurgan L
    Brief Bioinform; 2016 Jan; 17(1):88-105. PubMed ID: 25935161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein function annotation from sequence: prediction of residues interacting with RNA.
    Spriggs RV; Murakami Y; Nakamura H; Jones S
    Bioinformatics; 2009 Jun; 25(12):1492-7. PubMed ID: 19389733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review and comparative assessment of sequence-based predictors of protein-binding residues.
    Zhang J; Kurgan L
    Brief Bioinform; 2018 Sep; 19(5):821-837. PubMed ID: 28334258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type.
    Wang K; Hu G; Wu Z; Su H; Yang J; Kurgan L
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32961749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins.
    Katuwawala A; Kurgan L
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33291838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains.
    Zhang J; Ma Z; Kurgan L
    Brief Bioinform; 2019 Jul; 20(4):1250-1268. PubMed ID: 29253082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient mapping of RNA-binding residues in RNA-binding proteins using local sequence features of binding site residues in protein-RNA complexes.
    Agarwal A; Kant S; Bahadur RP
    Proteins; 2023 Sep; 91(9):1361-1379. PubMed ID: 37254800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementarity of the residue-level protein function and structure predictions in human proteins.
    BirĂ³ B; Zhao B; Kurgan L
    Comput Struct Biotechnol J; 2022; 20():2223-2234. PubMed ID: 35615015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server.
    Barik A; Katuwawala A; Hanson J; Paliwal K; Zhou Y; Kurgan L
    J Mol Biol; 2020 May; 432(11):3379-3387. PubMed ID: 31870849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of protein-level disorder predictions.
    Katuwawala A; Oldfield CJ; Kurgan L
    Brief Bioinform; 2020 Sep; 21(5):1509-1522. PubMed ID: 31616935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues.
    Yan J; Kurgan L
    Nucleic Acids Res; 2017 Jun; 45(10):e84. PubMed ID: 28132027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome.
    Chowdhury S; Zhang J; Kurgan L
    Proteomics; 2018 Nov; 18(21-22):e1800064. PubMed ID: 29806170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.