These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36629262)

  • 21. qNABpredict: Quick, accurate, and taxonomy-aware sequence-based prediction of content of nucleic acid binding amino acids.
    Wu Z; Basu S; Wu X; Kurgan L
    Protein Sci; 2023 Jan; 32(1):e4544. PubMed ID: 36519304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences.
    Zhang J; Kurgan L
    Bioinformatics; 2019 Jul; 35(14):i343-i353. PubMed ID: 31510679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting RNA-binding residues from evolutionary information and sequence conservation.
    Huang YF; Chiu LY; Huang CC; Huang CK
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S2. PubMed ID: 21143803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DEPICTER2: a comprehensive webserver for intrinsic disorder and disorder function prediction.
    Basu S; Gsponer J; Kurgan L
    Nucleic Acids Res; 2023 Jul; 51(W1):W141-W147. PubMed ID: 37140058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting structural and topological information to improve prediction of RNA-protein binding sites.
    Maetschke SR; Yuan Z
    BMC Bioinformatics; 2009 Oct; 10():341. PubMed ID: 19835626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences.
    Murakami Y; Spriggs RV; Nakamura H; Jones S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W412-6. PubMed ID: 20507911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncertainty analysis in protein disorder prediction.
    Ghalwash MF; Dunker AK; Obradović Z
    Mol Biosyst; 2012 Jan; 8(1):381-91. PubMed ID: 22101336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus.
    Fan X; Kurgan L
    J Biomol Struct Dyn; 2014; 32(3):448-64. PubMed ID: 23534882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A protein-RNA docking benchmark (II): extended set from experimental and homology modeling data.
    Pérez-Cano L; Jiménez-García B; Fernández-Recio J
    Proteins; 2012 Jul; 80(7):1872-82. PubMed ID: 22488990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences.
    Zhang J; Ghadermarzi S; Katuwawala A; Kurgan L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partner-specific prediction of RNA-binding residues in proteins: A critical assessment.
    Jung Y; El-Manzalawy Y; Dobbs D; Honavar VG
    Proteins; 2019 Mar; 87(3):198-211. PubMed ID: 30536635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive comparative assessment of in-silico predictors of disordered regions.
    Peng ZL; Kurgan L
    Curr Protein Pept Sci; 2012 Feb; 13(1):6-18. PubMed ID: 22044149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins.
    Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L
    Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information.
    Peng Z; Li Z; Meng Q; Zhao B; Kurgan L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection.
    Zhang F; Shi W; Zhang J; Zeng M; Li M; Kurgan L
    Bioinformatics; 2020 Dec; 36(Suppl_2):i735-i744. PubMed ID: 33381815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies.
    Yang XX; Deng ZL; Liu R
    Proteins; 2014 Oct; 82(10):2455-71. PubMed ID: 24854765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind.
    Peng Z; Wang C; Uversky VN; Kurgan L
    Methods Mol Biol; 2017; 1484():187-203. PubMed ID: 27787828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.