These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36629507)

  • 1. The role of post-translational modifications in synaptic AMPA receptor activity.
    Corti E; Duarte CB
    Biochem Soc Trans; 2023 Feb; 51(1):315-330. PubMed ID: 36629507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca
    Sanderson JL; Scott JD; Dell'Acqua ML
    J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The AMPA Receptor Code of Synaptic Plasticity.
    Diering GH; Huganir RL
    Neuron; 2018 Oct; 100(2):314-329. PubMed ID: 30359599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity.
    Jiang J; Suppiramaniam V; Wooten MW
    Neurosignals; 2006-2007; 15(5):266-82. PubMed ID: 17622793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AKAP150-anchored calcineurin regulates synaptic plasticity by limiting synaptic incorporation of Ca2+-permeable AMPA receptors.
    Sanderson JL; Gorski JA; Gibson ES; Lam P; Freund RK; Chick WS; Dell'Acqua ML
    J Neurosci; 2012 Oct; 32(43):15036-52. PubMed ID: 23100425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitination of the GluA1 Subunit of AMPA Receptors Is Required for Synaptic Plasticity, Memory, and Cognitive Flexibility.
    Guntupalli S; Park P; Han DH; Zhang L; Yong XLH; Ringuet M; Blackmore DG; Jhaveri DJ; Koentgen F; Widagdo J; Kaang BK; Anggono V
    J Neurosci; 2023 Jul; 43(30):5448-5457. PubMed ID: 37419688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice.
    Andrásfalvy BK; Smith MA; Borchardt T; Sprengel R; Magee JC
    J Physiol; 2003 Oct; 552(Pt 1):35-45. PubMed ID: 12878757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAP97 directs NMDA receptor spine targeting and synaptic plasticity.
    Li D; Specht CG; Waites CL; Butler-Munro C; Leal-Ortiz S; Foote JW; Genoux D; Garner CC; Montgomery JM
    J Physiol; 2011 Sep; 589(Pt 18):4491-510. PubMed ID: 21768261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPA receptor trafficking and its role in heterosynaptic plasticity.
    Antunes G; Simoes-de-Souza FM
    Sci Rep; 2018 Jul; 8(1):10349. PubMed ID: 29985438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
    Ehrlich I; Malinow R
    J Neurosci; 2004 Jan; 24(4):916-27. PubMed ID: 14749436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL
    Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LTD, LTP, and the sliding threshold for long-term synaptic plasticity.
    Stanton PK
    Hippocampus; 1996; 6(1):35-42. PubMed ID: 8878740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPA receptor trafficking and synaptic plasticity.
    Malinow R; Malenka RC
    Annu Rev Neurosci; 2002; 25():103-26. PubMed ID: 12052905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular machinery for the transport of AMPA receptors.
    Esteban JA
    Br J Pharmacol; 2008 Mar; 153 Suppl 1(Suppl 1):S35-43. PubMed ID: 18026130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The function of GluR1 and GluR2 in cerebellar and hippocampal LTP and LTD is regulated by interplay of phosphorylation and O-GlcNAc modification.
    Din N; Ahmad I; Ul Haq I; Elahi S; Hoessli DC; Shakoori AR
    J Cell Biochem; 2010 Feb; 109(3):585-97. PubMed ID: 20052678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation.
    Adesnik H; Nicoll RA
    J Neurosci; 2007 Apr; 27(17):4598-602. PubMed ID: 17460072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins.
    Greger IH; Watson JF; Cull-Candy SG
    Neuron; 2017 May; 94(4):713-730. PubMed ID: 28521126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner.
    Brown JC; Higgins ES; George MS
    Neuromodulation; 2022 Dec; 25(8):1289-1298. PubMed ID: 35088731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AMPA Receptor Subunit GluA1 is Required for CA1 Hippocampal Long-Term Potentiation but is not Essential for Synaptic Transmission.
    Terashima A; Suh YH; Isaac JTR
    Neurochem Res; 2019 Mar; 44(3):549-561. PubMed ID: 29098531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective regulation of GluA subunit synthesis and AMPA receptor-mediated synaptic function and plasticity by the translation repressor 4E-BP2 in hippocampal pyramidal cells.
    Ran I; Gkogkas CG; Vasuta C; Tartas M; Khoutorsky A; Laplante I; Parsyan A; Nevarko T; Sonenberg N; Lacaille JC
    J Neurosci; 2013 Jan; 33(5):1872-86. PubMed ID: 23365227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.