These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36629856)
1. Automatic Segmentation of Organs-at-Risk in Thoracic Computed Tomography Images Using Ensembled U-Net InceptionV3 Model. Ashok M; Gupta A J Comput Biol; 2023 Mar; 30(3):346-362. PubMed ID: 36629856 [TBL] [Abstract][Full Text] [Related]
2. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231 [TBL] [Abstract][Full Text] [Related]
3. ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation on thoracic CT images. Francis S; Jayaraj PB; Pournami PN; Thomas M; Jose AT; Binu AJ; Puzhakkal N Phys Eng Sci Med; 2022 Mar; 45(1):189-203. PubMed ID: 35029804 [TBL] [Abstract][Full Text] [Related]
4. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685 [TBL] [Abstract][Full Text] [Related]
5. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans. Siciarz P; McCurdy B Phys Med Biol; 2022 Jun; 67(11):. PubMed ID: 35134792 [No Abstract] [Full Text] [Related]
6. Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images. Ding Y; Chen Z; Wang Z; Wang X; Hu D; Ma P; Ma C; Wei W; Li X; Xue X; Wang X J Appl Clin Med Phys; 2022 Apr; 23(4):e13566. PubMed ID: 35192243 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnU-Net. Zhang G; Yang Z; Huo B; Chai S; Jiang S Comput Methods Programs Biomed; 2021 Nov; 211():106419. PubMed ID: 34563895 [TBL] [Abstract][Full Text] [Related]
9. Automatic delineation of organ at risk in cervical cancer radiotherapy based on ensemble learning. Cheng T; Zhang Z; Yang X; Lu S; Qian D; Wang X; Zhu H Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1058-1064. PubMed ID: 36097773 [TBL] [Abstract][Full Text] [Related]
10. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
11. Automatic segmentation of kidneys in computed tomography images using U-Net. Khalal DM; Azizi H; Maalej N Cancer Radiother; 2023 Apr; 27(2):109-114. PubMed ID: 36739197 [TBL] [Abstract][Full Text] [Related]
12. Geometric and Dosimetric Evaluation of the Automatic Delineation of Organs at Risk (OARs) in Non-Small-Cell Lung Cancer Radiotherapy Based on a Modified DenseNet Deep Learning Network. Zhang F; Wang Q; Yang A; Lu N; Jiang H; Chen D; Yu Y; Wang Y Front Oncol; 2022; 12():861857. PubMed ID: 35371991 [TBL] [Abstract][Full Text] [Related]
13. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
14. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related]
15. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
16. Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images. Gou S; Tong N; Qi S; Yang S; Chin R; Sheng K Phys Med Biol; 2020 Dec; 65(24):245034. PubMed ID: 32097892 [TBL] [Abstract][Full Text] [Related]
17. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620 [TBL] [Abstract][Full Text] [Related]
18. Automatic segmentation of thoracic CT images using three deep learning models. Khalal DM; Behouch A; Azizi H; Maalej N Cancer Radiother; 2022 Nov; 26(8):1008-1015. PubMed ID: 35803861 [TBL] [Abstract][Full Text] [Related]
19. Artificial Intelligence Radiotherapy Planning: Automatic Segmentation of Human Organs in CT Images Based on a Modified Convolutional Neural Network. Shen G; Jin X; Sun C; Li Q Front Public Health; 2022; 10():813135. PubMed ID: 35493368 [TBL] [Abstract][Full Text] [Related]
20. Weaving attention U-net: A novel hybrid CNN and attention-based method for organs-at-risk segmentation in head and neck CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Nov; 48(11):7052-7062. PubMed ID: 34655077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]