These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36630076)

  • 41. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy.
    Maretti E; Costantino L; Buttini F; Rustichelli C; Leo E; Truzzi E; Iannuccelli V
    Drug Deliv Transl Res; 2019 Feb; 9(1):298-310. PubMed ID: 30484257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection.
    Yang S; Han X; Yang Y; Qiao H; Yu Z; Liu Y; Wang J; Tang T
    ACS Appl Mater Interfaces; 2018 May; 10(17):14299-14311. PubMed ID: 29633833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface charge modulation of rifampicin-loaded PLA nanoparticles to improve antibiotic delivery in Staphylococcus aureus biofilms.
    Da Costa D; Exbrayat-Héritier C; Rambaud B; Megy S; Terreux R; Verrier B; Primard C
    J Nanobiotechnology; 2021 Jan; 19(1):12. PubMed ID: 33413448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preclinical bioassay of a novel antibacterial mesh for the repair of abdominal hernia defects.
    Pérez-Köhler B; Benito-Martínez S; García-Moreno F; Rodríguez M; Pascual G; Bellón JM
    Surgery; 2020 Mar; 167(3):598-608. PubMed ID: 31785825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: study of antibiotic combinations.
    Nguyen HA; Denis O; Vergison A; Tulkens PM; Struelens MJ; Van Bambeke F
    Antimicrob Agents Chemother; 2009 Apr; 53(4):1443-9. PubMed ID: 19188397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased rifampicin resistance in blood isolates of meticillin-resistant Staphylococcus aureus (MRSA) amongst patients exposed to rifampicin-containing antituberculous treatment.
    Tan CK; Lai CC; Liao CH; Lin SH; Huang YT; Hsueh PR
    Int J Antimicrob Agents; 2011 Jun; 37(6):550-3. PubMed ID: 21482080
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant Staphylococcus aureus.
    Lemaire S; Glupczynski Y; Duval V; Joris B; Tulkens PM; Van Bambeke F
    Antimicrob Agents Chemother; 2009 Jun; 53(6):2289-97. PubMed ID: 19289525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combating Intracellular Pathogens with Nanohybrid-Facilitated Antibiotic Delivery.
    Bose RJC; Tharmalingam N; Choi Y; Madheswaran T; Paulmurugan R; McCarthy JR; Lee SH; Park H
    Int J Nanomedicine; 2020; 15():8437-8449. PubMed ID: 33162754
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model.
    Sandberg A; Hessler JH; Skov RL; Blom J; Frimodt-Møller N
    Antimicrob Agents Chemother; 2009 May; 53(5):1874-83. PubMed ID: 19223616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pH-responsive microparticles of rifampicin for augmented intramacrophage uptake and enhanced antitubercular efficacy.
    Lokhande AS; Panchal F; Munshi R; Madkaikar M; Malshe VC; Devarajan PV
    Int J Pharm; 2023 Mar; 635():122729. PubMed ID: 36803923
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formulation and in vitro characterization of rifampicin-loaded porous poly (ε-caprolactone) microspheres for sustained skeletal delivery.
    Mei Q; Luo P; Zuo Y; Li J; Zou Q; Li Y; Jiang D; Wang Y
    Drug Des Devel Ther; 2018; 12():1533-1544. PubMed ID: 29910601
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cascade-Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via On-Site Antibiotic Delivery.
    Feng W; Li G; Kang X; Wang R; Liu F; Zhao D; Li H; Bu F; Yu Y; Moriarty TF; Ren Q; Wang X
    Adv Mater; 2022 Mar; 34(12):e2109789. PubMed ID: 35066925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Staphylococcus aureus Uses the GraXRS Regulatory System To Sense and Adapt to the Acidified Phagolysosome in Macrophages.
    Flannagan RS; Kuiack RC; McGavin MJ; Heinrichs DE
    mBio; 2018 Jul; 9(4):. PubMed ID: 30018109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradable and pH-Responsive Amphiphilic Poly(succinimide) Derivatives for Triggered Release of Antibiotics for Management of Infected Wounds.
    Lam DL; Cheng YT; Huang CJ
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53297-53309. PubMed ID: 37947480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections.
    Hassan D; Omolo CA; Fasiku VO; Mocktar C; Govender T
    Int J Biol Macromol; 2020 Mar; 147():385-398. PubMed ID: 31926237
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Poly(ethylene carbonate)-containing polylactic acid microparticles with rifampicin improve drug delivery to macrophages.
    Priemel PA; Wang Y; Bohr A; Water JJ; Yang M; Mørck Nielsen H
    J Pharm Pharmacol; 2018 Aug; 70(8):1009-1021. PubMed ID: 29851078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release.
    Albright V; Zhuk I; Wang Y; Selin V; van de Belt-Gritter B; Busscher HJ; van der Mei HC; Sukhishvili SA
    Acta Biomater; 2017 Oct; 61():66-74. PubMed ID: 28803214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment.
    Vieira AC; Magalhães J; Rocha S; Cardoso MS; Santos SG; Borges M; Pinheiro M; Reis S
    Nanomedicine (Lond); 2017 Dec; 12(24):2721-2736. PubMed ID: 29119867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages.
    Pati R; Sahu R; Panda J; Sonawane A
    Sci Rep; 2016 Apr; 6():24184. PubMed ID: 27113139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. pH-Responsive non-antibiotic polymer prodrugs eradicate intracellular infection by killing bacteria and regulating immune response.
    Dai X; Liu X; Yang L; Yuan S; Xu Q; Li Y; Gao F
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112889. PubMed ID: 36183635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.