BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3663010)

  • 21. Use of gated perfusion to study early effects of anoxia on cardiac energy metabolism: a new 31P NMR method.
    Barbour RL; Sotak CH; Levy GC; Chan SH
    Biochemistry; 1984 Dec; 23(25):6053-62. PubMed ID: 6525343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of very-low-density lipoprotein and chylomicrons by streptozotocin-induced diabetic rat heart: effects of diabetes and lipoprotein preference.
    Niu YG; Evans RD
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1106-16. PubMed ID: 18780778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graded global ischaemia and reperfusion of the isolated perfused rat heart: characterisation by 31P NMR spectroscopy of the extent of energy metabolism damage.
    Lavanchy N; Martin J; Rossi A
    Cardiovasc Res; 1984 Sep; 18(9):573-82. PubMed ID: 6467274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipoprotein lipase release from cardiac myocytes is increased by decavanadate but not insulin.
    Braun JE; Severson DL
    Am J Physiol; 1992 May; 262(5 Pt 1):E663-70. PubMed ID: 1590376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chylomicron metabolism by the isolated perfused mouse heart.
    Mardy K; Belke DD; Severson DL
    Am J Physiol Endocrinol Metab; 2001 Aug; 281(2):E357-64. PubMed ID: 11440913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual localization of lipoprotein lipase in rat heart. Its relationship to chylomicron degradation.
    Stam H; Jansen H; Hülsmann WC
    Adv Myocardiol; 1982; 3():509-17. PubMed ID: 7170439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiac lipoprotein lipase in the spontaneously hypertensive rat.
    Sambandam N; Chen X; Cam MC; Rodrigues B
    Cardiovasc Res; 1997 Feb; 33(2):460-8. PubMed ID: 9074711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase.
    An D; Pulinilkunnil T; Qi D; Ghosh S; Abrahani A; Rodrigues B
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E246-53. PubMed ID: 15328075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Difference in the time course between increases in coronary flow and in effluent adenosine concentration during anoxia in the perfused rat heart.
    Ishibashi T; Ichihara K; Abiko Y
    Jpn Circ J; 1985 Oct; 49(10):1090-8. PubMed ID: 4087339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heparin-independent release of lipoprotein lipase activity from perfused rat hearts.
    Bagby GJ
    Biochim Biophys Acta; 1983 Aug; 753(1):47-52. PubMed ID: 6882786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac lipoprotein lipase: effects of lipopolysaccharide and tumor necrosis factor.
    Hülsmann WC; Dubelaar ML; De Wit LE; Persoon NL
    Mol Cell Biochem; 1988 Feb; 79(2):137-45. PubMed ID: 3398837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible role of lipoprotein lipase in the regulation of endogenous triacylglycerols in the rat heart.
    Palmer WK; Caruso RA; Oscai LB
    Biochem J; 1981 Jul; 198(1):159-66. PubMed ID: 6173039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of hormones, amino acids and specific inhibitors on rat heart heparin-releasable lipoprotein lipase and tissue neutral lipase activities during long-term perfusion.
    Stam H; Hülsmann WC
    Biochim Biophys Acta; 1984 Jun; 794(1):72-82. PubMed ID: 6375731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts.
    Davies NJ; McVeigh JJ; Lopaschuk GD
    Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac-specific VEGFB overexpression reduces lipoprotein lipase activity and improves insulin action in rat heart.
    Shang R; Lal N; Lee CS; Zhai Y; Puri K; Seira O; Boushel RC; Sultan I; Räsänen M; Alitalo K; Hussein B; Rodrigues B
    Am J Physiol Endocrinol Metab; 2021 Dec; 321(6):E753-E765. PubMed ID: 34747201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. beta-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload.
    An D; Kewalramani G; Qi D; Pulinilkunnil T; Ghosh S; Abrahani A; Wambolt R; Allard M; Innis SM; Rodrigues B
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1120-7. PubMed ID: 15687106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic requirements for release of endogenous noradrenaline during myocardial ischaemia and anoxia.
    Dart AM; Riemersma RA; Schömig A; Ungar A
    Br J Pharmacol; 1987 Jan; 90(1):43-50. PubMed ID: 3814923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty acid ethyl ester synthesis by the isolated perfused rat heart.
    Chang W; Waltenbaugh C; Borensztajn J
    Metabolism; 1997 Aug; 46(8):926-9. PubMed ID: 9258276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A transcription-dependent mechanism, akin to that in adipose tissue, modulates lipoprotein lipase activity in rat heart.
    Wu G; Zhang L; Gupta J; Olivecrona G; Olivecrona T
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E908-15. PubMed ID: 17595214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute intralipid infusion reduces cardiac luminal lipoprotein lipase but recruits additional enzyme from cardiomyocytes.
    Qi D; Kuo KH; Abrahani A; An D; Qi Y; Heung J; Kewalramani G; Pulinilkunnil T; Ghosh S; Innis SM; Rodrigues B
    Cardiovasc Res; 2006 Oct; 72(1):124-33. PubMed ID: 16934788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.