These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36630430)
1. Comparison of Refractive Prediction Accuracy With Three Optical Devices. Cheng SM; Li X; Zhang JS; Mei JQ; Shi GL; Lin J; Li TT; Yu AY J Refract Surg; 2023 Jan; 39(1):48-55. PubMed ID: 36630430 [TBL] [Abstract][Full Text] [Related]
2. Comparison of measurements and calculated lens power using three biometers: a Scheimpflug tomographer with partial coherence interferometry and two swept source optical coherence tomographers. Ang RET; Estolano BL; Luz PHC; Umali MIN; Araneta MMQ; Cruz EM BMC Ophthalmol; 2024 Sep; 24(1):410. PubMed ID: 39300358 [TBL] [Abstract][Full Text] [Related]
3. Comparison of refractive outcomes obtained with two swept-source OCT-based optical biometers after cataract surgery: A study of 152 eyes. Agard E; Levron A; Billant J; Douma I; Dot C J Fr Ophtalmol; 2024 Jun; 47(6):104186. PubMed ID: 38663226 [TBL] [Abstract][Full Text] [Related]
4. [Comparison of the accuracy of intraocular lens power calculation formulas based on the new swept-source optical coherence tomography biometry]. Deng XH; Chang PJ; Huang JH; Wang DD; Zhao YY; Ding XX; Zhao YE Zhonghua Yan Ke Za Zhi; 2021 Jul; 57(7):502-511. PubMed ID: 34256470 [No Abstract] [Full Text] [Related]
5. Agreement between Two Swept-Source Optical Coherence Tomography Biometers and a Partial Coherence Interferometer. Moon JY; Cho SC; Kim HJ; Jun RM; Han KE Korean J Ophthalmol; 2022 Aug; 36(4):326-337. PubMed ID: 35766049 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of Nine Formulas to Calculate the Powers of an Extended Depth-of-Focus IOL Using Two SS-OCT Biometers. Jeon S; Taroni L; Lupardi E; Hoffer KJ; Fontana L; Schiano-Lomoriello D; Kwon H; Savini G J Refract Surg; 2023 Mar; 39(3):158-164. PubMed ID: 36892239 [TBL] [Abstract][Full Text] [Related]
7. Accuracy of intraocular lens calculation formulas in cataract patients with steep corneal curvature. Zhang C; Dai G; Pazo EE; Xu L; Wu X; Zhang H; Lin T; He W PLoS One; 2020; 15(11):e0241630. PubMed ID: 33216749 [TBL] [Abstract][Full Text] [Related]
8. Lower refractive prediction accuracy of total keratometry using intraocular lens formulas loaded onto a swept-source optical biometer. Danjo Y; Ohji R; Maeno S Graefes Arch Clin Exp Ophthalmol; 2023 Jan; 261(1):137-146. PubMed ID: 35881200 [TBL] [Abstract][Full Text] [Related]
9. Refractive predictability using two optical biometers and refraction types for intraocular lens power calculation in cataract surgery. Cheng H; Li J; Cheng B; Wu M Int Ophthalmol; 2020 Jul; 40(7):1849-1856. PubMed ID: 32297050 [TBL] [Abstract][Full Text] [Related]
10. Algorithmic intraocular lens power calculation formula selection by keratometry, anterior chamber depth and axial length. Kim JW; Eom Y; Yoon EG; Choi Y; Song JS; Jeong JW; Park SK; Kim HM Acta Ophthalmol; 2022 May; 100(3):e701-e709. PubMed ID: 34378871 [TBL] [Abstract][Full Text] [Related]
11. Comparison of ocular biometric measurements in patients with cataract using three swept-source optical coherence tomography devices. Oh R; Oh JY; Choi HJ; Kim MK; Yoon CH BMC Ophthalmol; 2021 Jan; 21(1):62. PubMed ID: 33504333 [TBL] [Abstract][Full Text] [Related]
12. Accuracy of intraocular lens power calculation using three optical biometry measurement devices: the OA-2000, Lenstar-LS900 and IOLMaster-500. Reitblat O; Levy A; Kleinmann G; Assia EI Eye (Lond); 2018 Jul; 32(7):1244-1252. PubMed ID: 29527012 [TBL] [Abstract][Full Text] [Related]
13. Refractive Predictability Using the IOLMaster 700 and Artificial Intelligence-Based IOL Power Formulas Compared to Standard Formulas. Cheng H; Kane JX; Liu L; Li J; Cheng B; Wu M J Refract Surg; 2020 Jul; 36(7):466-472. PubMed ID: 32644169 [TBL] [Abstract][Full Text] [Related]
14. Comparison of refractive outcomes using Scheimpflug Holladay equivalent keratometry or IOLMaster 700 keratometry for IOL power calculation. Aksoy M; Asena L; Güngör SG; Küçüködük A; Akman A Int Ophthalmol; 2021 Jun; 41(6):2205-2212. PubMed ID: 33733281 [TBL] [Abstract][Full Text] [Related]
15. Comparison of acquisition rate and agreement of axial length with two swept-source optical coherence tomographers and a partial coherence interferometer. Cheng SM; Yan WT; Zhang JS; Li TT; Li X; Yu AY Graefes Arch Clin Exp Ophthalmol; 2022 Sep; 260(9):2905-2911. PubMed ID: 35488908 [TBL] [Abstract][Full Text] [Related]
16. [Intraocular lens power calculation for high myopic eyes with cataract: comparison of three formulas]. Zhu XJ; He WW; Du Y; Qian DJ; Dai JH; Lu Y Zhonghua Yan Ke Za Zhi; 2017 Apr; 53(4):260-265. PubMed ID: 28412798 [No Abstract] [Full Text] [Related]
17. Refractive prediction of four different intraocular lens calculation formulas compared between new swept source optical coherence tomography and partial coherence interferometry. Song MY; Noh SR; Kim KY PLoS One; 2021; 16(5):e0251152. PubMed ID: 33945581 [TBL] [Abstract][Full Text] [Related]
19. Refractive prediction error in cataract surgery using an optical biometer equipped with anterior segment OCT. Kato Y; Kojima T; Tamaoki A; Ichikawa K; Tamura K; Ichikawa K J Cataract Refract Surg; 2022 Apr; 48(4):429-434. PubMed ID: 34417778 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of Intraocular Lens Calculation Formulas in Patients Undergoing Combined Phakic Intraocular Lens Removal and Cataract Surgery. Zhang J; Xia Z; Han X; Liu Z; Lin H; Qiu X; Zhang M; Ruan X; Chen X; Jin G; Gu X; Tan X; Luo L; Liu Y Am J Ophthalmol; 2022 Feb; 234():241-249. PubMed ID: 34624249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]