BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36630494)

  • 1. Tissue-preferential recruitment of electron transfer chains for cytochrome P450-catalyzed phenolic biosynthesis.
    Zhao X; Zhao Y; Gou M; Liu CJ
    Sci Adv; 2023 Jan; 9(2):eade4389. PubMed ID: 36630494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalytic system for comparatively assessing the functional association of monolignol cytochrome P450 monooxygenases with their redox partners.
    Zhao X; Liu CJ
    Methods Enzymol; 2022; 676():133-158. PubMed ID: 36280348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome
    Gou M; Yang X; Zhao Y; Ran X; Song Y; Liu CJ
    Plant Cell; 2019 Jun; 31(6):1344-1366. PubMed ID: 30962392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome b5 diversity in green lineages preceded the evolution of syringyl lignin biosynthesis.
    Zhao X; Zhao Y; Zeng QY; Liu CJ
    Plant Cell; 2024 Jul; 36(7):2709-2728. PubMed ID: 38657101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5.
    Yamazaki H; Johnson WW; Ueng YF; Shimada T; Guengerich FP
    J Biol Chem; 1996 Nov; 271(44):27438-44. PubMed ID: 8910324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast. Kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway.
    Urban P; Werck-Reichhart D; Teutsch HG; Durst F; Regnier S; Kazmaier M; Pompon D
    Eur J Biochem; 1994 Jun; 222(3):843-50. PubMed ID: 8026495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes.
    Gou M; Ran X; Martin DW; Liu CJ
    Nat Plants; 2018 May; 4(5):299-310. PubMed ID: 29725099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms.
    Osakabe K; Tsao CC; Li L; Popko JL; Umezawa T; Carraway DT; Smeltzer RH; Joshi CP; Chiang VL
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8955-60. PubMed ID: 10430877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of electron transport proteins on the reactions catalyzed by Fusarium fujikuroi gibberellin monooxygenases.
    Troncoso C; Cárcamo J; Hedden P; Tudzynski B; Rojas MC
    Phytochemistry; 2008 Feb; 69(3):672-83. PubMed ID: 17920091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirements for cytochrome b5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes.
    Yamazaki H; Nakano M; Gillam EM; Bell LC; Guengerich FP; Shimada T
    Biochem Pharmacol; 1996 Jul; 52(2):301-9. PubMed ID: 8694855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners.
    Yablokov EO; Sushko TA; Ershov PV; Florinskaya AV; Gnedenko OV; Shkel TV; Grabovec IP; Strushkevich NV; Kaluzhskiy LA; Usanov SA; Gilep AA; Ivanov AS
    Biochimie; 2019 Jul; 162():156-166. PubMed ID: 31034920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression and mechanistic investigation of a fungal cytochrome P450 (CYP5150A2): involvement of alternative redox partners.
    Ichinose H; Wariishi H
    Arch Biochem Biophys; 2012 Feb; 518(1):8-15. PubMed ID: 22206618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of divalent metal ions in oxidations catalyzed by recombinant cytochrome P450 3A4 and replacement of NADPH--cytochrome P450 reductase with other flavoproteins, ferredoxin, and oxygen surrogates.
    Yamazaki H; Ueng YF; Shimada T; Guengerich FP
    Biochemistry; 1995 Jul; 34(26):8380-9. PubMed ID: 7599128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of specifically active recombinant fused enzymes consisting of CYP3A4, NADPH-cytochrome P450 oxidoreductase, and cytochrome b5.
    Inui H; Maeda A; Ohkawa H
    Biochemistry; 2007 Sep; 46(35):10213-21. PubMed ID: 17691855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification.
    Sundin L; Vanholme R; Geerinck J; Goeminne G; Höfer R; Kim H; Ralph J; Boerjan W
    Plant Physiol; 2014 Dec; 166(4):1956-71. PubMed ID: 25315601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of cytochrome b5, NADPH-P450 reductase, and lipid on the rate of 6 beta-hydroxylation of testosterone as catalyzed by a human P450 3A4 fusion protein.
    Shet MS; Faulkner KM; Holmans PL; Fisher CW; Estabrook RW
    Arch Biochem Biophys; 1995 Apr; 318(2):314-21. PubMed ID: 7733659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms.
    Perret A; Pompon D
    Biochemistry; 1998 Aug; 37(33):11412-24. PubMed ID: 9708976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 polymorphism--molecular, metabolic and pharmacogenetic aspects. I. Mechanisms of activity of cytochrome P450 monooxygenases.
    Pachecka J; Tomaszewski P; Kubiak-Tomaszewska G
    Acta Pol Pharm; 2008; 65(3):303-6. PubMed ID: 18646549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.