These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36630510)

  • 1. Accurate global machine learning force fields for molecules with hundreds of atoms.
    Chmiela S; Vassilev-Galindo V; Unke OT; Kabylda A; Sauceda HE; Tkatchenko A; Müller KR
    Sci Adv; 2023 Jan; 9(2):eadf0873. PubMed ID: 36630510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards exact molecular dynamics simulations with machine-learned force fields.
    Chmiela S; Sauceda HE; Müller KR; Tkatchenko A
    Nat Commun; 2018 Sep; 9(1):3887. PubMed ID: 30250077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces.
    Sauceda HE; Chmiela S; Poltavsky I; Müller KR; Tkatchenko A
    J Chem Phys; 2019 Mar; 150(11):114102. PubMed ID: 30901990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning of accurate energy-conserving molecular force fields.
    Chmiela S; Tkatchenko A; Sauceda HE; Poltavsky I; Schütt KT; Müller KR
    Sci Adv; 2017 May; 3(5):e1603015. PubMed ID: 28508076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields.
    Sauceda HE; Gastegger M; Chmiela S; Müller KR; Tkatchenko A
    J Chem Phys; 2020 Sep; 153(12):124109. PubMed ID: 33003761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Q-Force: Quantum Mechanically Augmented Molecular Force Fields.
    Sami S; Menger MFSJ; Faraji S; Broer R; Havenith RWA
    J Chem Theory Comput; 2021 Aug; 17(8):4946-4960. PubMed ID: 34251194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BIGDML-Towards accurate quantum machine learning force fields for materials.
    Sauceda HE; Gálvez-González LE; Chmiela S; Paz-Borbón LO; Müller KR; Tkatchenko A
    Nat Commun; 2022 Jun; 13(1):3733. PubMed ID: 35768400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects.
    Unke OT; Chmiela S; Gastegger M; Schütt KT; Sauceda HE; Müller KR
    Nat Commun; 2021 Dec; 12(1):7273. PubMed ID: 34907176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Force Fields.
    Unke OT; Chmiela S; Sauceda HE; Gastegger M; Poltavsky I; Schütt KT; Tkatchenko A; Müller KR
    Chem Rev; 2021 Aug; 121(16):10142-10186. PubMed ID: 33705118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems.
    Prezhdo OV
    Acc Chem Res; 2021 Dec; 54(23):4239-4249. PubMed ID: 34756013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules.
    Vassilev-Galindo V; Fonseca G; Poltavsky I; Tkatchenko A
    J Chem Phys; 2021 Mar; 154(9):094119. PubMed ID: 33685131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.
    Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller KR; Tkatchenko A
    J Phys Chem Lett; 2015 Jun; 6(12):2326-31. PubMed ID: 26113956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Quantum-Mechanically Derived Force-Fields through a Fragment-Based Approach: Balancing Specificity and Transferability in the Prediction of Self-Assembly in Soft Matter.
    Greff da Silveira L; Livotto PR; Padula D; Vilhena JG; Prampolini G
    J Chem Theory Comput; 2022 Nov; 18(11):6905-6919. PubMed ID: 36260420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE.
    Kovács DP; Oord CV; Kucera J; Allen AEA; Cole DJ; Ortner C; Csányi G
    J Chem Theory Comput; 2021 Dec; 17(12):7696-7711. PubMed ID: 34735161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Generation of Machine Learning-Based Force Fields for Adsorption Energies.
    Bag S; Konrad M; Schlöder T; Friederich P; Wenzel W
    J Chem Theory Comput; 2021 Nov; 17(11):7195-7202. PubMed ID: 34623804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning.
    Fonseca G; Poltavsky I; Vassilev-Galindo V; Tkatchenko A
    J Chem Phys; 2021 Mar; 154(12):124102. PubMed ID: 33810678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.