These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36630510)

  • 21. Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields.
    Schmitz NF; Müller KR; Chmiela S
    J Phys Chem Lett; 2022 Nov; 13(43):10183-10189. PubMed ID: 36279418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transferable next-generation force fields from simple liquids to complex materials.
    Schmidt JR; Yu K; McDaniel JG
    Acc Chem Res; 2015 Mar; 48(3):548-56. PubMed ID: 25688596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning the Quantum Centroid Force Correction in Molecular Systems: A Localized Approach.
    Wu C; Li R; Yu K
    Front Mol Biosci; 2022; 9():851311. PubMed ID: 35664679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex.
    Diez-Cabanes V; Prampolini G; Francés-Monerris A; Monari A; Pastore M
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32640764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules.
    Mudedla SK; Braka A; Wu S
    Front Mol Biosci; 2022; 9():1002535. PubMed ID: 36304919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Considerations of Recent All-Atom Lipid Force Field Development.
    Klauda JB
    J Phys Chem B; 2021 Jun; 125(22):5676-5682. PubMed ID: 34048653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning molecular dynamics for the simulation of infrared spectra.
    Gastegger M; Behler J; Marquetand P
    Chem Sci; 2017 Oct; 8(10):6924-6935. PubMed ID: 29147518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First-Principles-Based Machine-Learning Molecular Dynamics for Crystalline Polymers with van der Waals Interactions.
    Hong SJ; Chun H; Lee J; Kim BH; Seo MH; Kang J; Han B
    J Phys Chem Lett; 2021 Jul; 12(25):6000-6006. PubMed ID: 34165310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benchmarking polarizable and non-polarizable force fields for Ca
    Amin KS; Hu X; Salahub DR; Baldauf C; Lim C; Noskov S
    J Chem Phys; 2020 Oct; 153(14):144102. PubMed ID: 33086838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of Peptides with Classical and Novel Machine Learning Force Fields: A Comparison.
    Rosenberger D; Smith JS; Garcia AE
    J Phys Chem B; 2021 Apr; 125(14):3598-3612. PubMed ID: 33798336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A transferable active-learning strategy for reactive molecular force fields.
    Young TA; Johnston-Wood T; Deringer VL; Duarte F
    Chem Sci; 2021 Aug; 12(32):10944-10955. PubMed ID: 34476072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An On-the-Fly Approach to Construct Generalized Energy-Based Fragmentation Machine Learning Force Fields of Complex Systems.
    Cheng Z; Zhao D; Ma J; Li W; Li S
    J Phys Chem A; 2020 Jun; 124(24):5007-5014. PubMed ID: 32459485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field.
    Lin FY; Huang J; Pandey P; Rupakheti C; Li J; Roux BT; MacKerell AD
    J Chem Theory Comput; 2020 May; 16(5):3221-3239. PubMed ID: 32282198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A unified picture of the covalent bond within quantum-accurate force fields: From organic molecules to metallic complexes' reactivity.
    Lunghi A; Sanvito S
    Sci Adv; 2019 May; 5(5):eaaw2210. PubMed ID: 31172029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials.
    Manz TA; Sholl DS
    J Chem Theory Comput; 2012 Aug; 8(8):2844-67. PubMed ID: 26592125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid to crystal Si growth simulation using machine learning force field.
    Miao L; Wang LW
    J Chem Phys; 2020 Aug; 153(7):074501. PubMed ID: 32828094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated Parameterization of Quantum Mechanically Derived Force Fields for Soft Materials and Complex Fluids: Development and Validation.
    Vilhena JG; Greff da Silveira L; Livotto PR; Cacelli I; Prampolini G
    J Chem Theory Comput; 2021 Jul; 17(7):4449-4464. PubMed ID: 34185536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.