These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36630537)
1. Screening for in vitro systematic reviews: a comparison of screening methods and training of a machine learning classifier. Wilson E; Cruz F; Maclean D; Ghanawi J; McCann SK; Brennan PM; Liao J; Sena ES; Macleod M Clin Sci (Lond); 2023 Jan; 137(2):181-193. PubMed ID: 36630537 [TBL] [Abstract][Full Text] [Related]
2. Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews. Popoff E; Besada M; Jansen JP; Cope S; Kanters S Syst Rev; 2020 Dec; 9(1):293. PubMed ID: 33308292 [TBL] [Abstract][Full Text] [Related]
3. Text mining to support abstract screening for knowledge syntheses: a semi-automated workflow. Pham B; Jovanovic J; Bagheri E; Antony J; Ashoor H; Nguyen TT; Rios P; Robson R; Thomas SM; Watt J; Straus SE; Tricco AC Syst Rev; 2021 May; 10(1):156. PubMed ID: 34039433 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. Automation of systematic reviews of biomedical literature: a scoping review of studies indexed in PubMed. Tóth B; Berek L; Gulácsi L; Péntek M; Zrubka Z Syst Rev; 2024 Jul; 13(1):174. PubMed ID: 38978132 [TBL] [Abstract][Full Text] [Related]
6. Discriminating between empirical studies and nonempirical works using automated text classification. Langlois A; Nie JY; Thomas J; Hong QN; Pluye P Res Synth Methods; 2018 Dec; 9(4):587-601. PubMed ID: 30103261 [TBL] [Abstract][Full Text] [Related]
7. Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error. Bannach-Brown A; Przybyła P; Thomas J; Rice ASC; Ananiadou S; Liao J; Macleod MR Syst Rev; 2019 Jan; 8(1):23. PubMed ID: 30646959 [TBL] [Abstract][Full Text] [Related]
8. In-depth evaluation of machine learning methods for semi-automating article screening in a systematic review of mechanistic literature. Kebede MM; Le Cornet C; Fortner RT Res Synth Methods; 2023 Mar; 14(2):156-172. PubMed ID: 35798691 [TBL] [Abstract][Full Text] [Related]
9. Unsupervised title and abstract screening for systematic review: a retrospective case-study using topic modelling methodology. Natukunda A; Muchene LK Syst Rev; 2023 Jan; 12(1):1. PubMed ID: 36597132 [TBL] [Abstract][Full Text] [Related]
10. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
11. Decoding semi-automated title-abstract screening: findings from a convenience sample of reviews. Gates A; Gates M; DaRosa D; Elliott SA; Pillay J; Rahman S; Vandermeer B; Hartling L Syst Rev; 2020 Nov; 9(1):272. PubMed ID: 33243276 [TBL] [Abstract][Full Text] [Related]
12. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Rathbone J; Hoffmann T; Glasziou P Syst Rev; 2015 Jun; 4():80. PubMed ID: 26073974 [TBL] [Abstract][Full Text] [Related]
13. Natural language processing was effective in assisting rapid title and abstract screening when updating systematic reviews. Qin X; Liu J; Wang Y; Liu Y; Deng K; Ma Y; Zou K; Li L; Sun X J Clin Epidemiol; 2021 May; 133():121-129. PubMed ID: 33485929 [TBL] [Abstract][Full Text] [Related]
14. A text-mining tool generated title-abstract screening workload savings: performance evaluation versus single-human screening. Carey N; Harte M; Mc Cullagh L J Clin Epidemiol; 2022 Sep; 149():53-59. PubMed ID: 35654270 [TBL] [Abstract][Full Text] [Related]
15. Use of cost-effectiveness analysis to compare the efficiency of study identification methods in systematic reviews. Shemilt I; Khan N; Park S; Thomas J Syst Rev; 2016 Aug; 5(1):140. PubMed ID: 27535658 [TBL] [Abstract][Full Text] [Related]
16. Machine learning approaches to analysing textual injury surveillance data: a systematic review. Vallmuur K Accid Anal Prev; 2015 Jun; 79():41-9. PubMed ID: 25795924 [TBL] [Abstract][Full Text] [Related]
17. Screening nonrandomized studies for medical systematic reviews: a comparative study of classifiers. Bekhuis T; Demner-Fushman D Artif Intell Med; 2012 Jul; 55(3):197-207. PubMed ID: 22677493 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of text mining to reduce screening workload for injury-focused systematic reviews. Giummarra MJ; Lau G; Gabbe BJ Inj Prev; 2020 Feb; 26(1):55-60. PubMed ID: 31451565 [TBL] [Abstract][Full Text] [Related]
19. An evaluation of DistillerSR's machine learning-based prioritization tool for title/abstract screening - impact on reviewer-relevant outcomes. Hamel C; Kelly SE; Thavorn K; Rice DB; Wells GA; Hutton B BMC Med Res Methodol; 2020 Oct; 20(1):256. PubMed ID: 33059590 [TBL] [Abstract][Full Text] [Related]
20. Machine learning models for abstract screening task - A systematic literature review application for health economics and outcome research. Du J; Soysal E; Wang D; He L; Lin B; Wang J; Manion FJ; Li Y; Wu E; Yao L BMC Med Res Methodol; 2024 May; 24(1):108. PubMed ID: 38724903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]